• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm

Thumbnail

Göster/Aç

Tam metin / Full text (1.433Mb)

Tarih

2019

Yazar

Ballı, Serkan
Sağbaş, Ensar Arif
Peker, Musa

Üst veri

Tüm öğe kaydını göster

Özet

Background: Detecting of human movements is an important task in various areas such as healthcare, fitness and eldercare. It is now possible to achieve this aim using mobile applications. These applications provide users, doctors and related persons a better understanding about daily physical activities. It can also lead to various useful habits by following the activities of the users in their daily life. In addition, dangerous actions such as the fall of elderly people or young children are identified and necessary precautions are taken as soon as possible. Classification of human motions with motion sensor data is among the current topics of study. Smart watches have these sensors built-in. Thus, it is possible to follow the activities of a user carrying only a smart watch. Methods: The purpose of this work is to detect human movements using smart watch sensor data and machine learning methods. The data are obtained from the accelerometer, gyroscope, step counter and heart rate sensors of the smart watch. The obtained data have been divided into 2 s windows and a data set containing 500 patterns for each class has been created for each class. Results and Discussion: After the features were determined, the data set to which the principal component analysis has been applied was classified by random forest, support vector machine, C4.5 and k-nearest neighbor methods, and their performances were compared. The most successful result was obtained from the random forest method.

Kaynak

Measurement & Control

Cilt

52

Sayı

1-2

Bağlantı

https://doi.org/10.1177/0020294018813692
https://hdl.handle.net/20.500.12809/1236

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.