• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparative evaluation of Gravitational Search Algorithm (GSA) against Artificial Bee Colony (ABC) for thermodynamic performance a geothermal power plant

Thumbnail

View/Open

Tam metin / Full text (1.712Mb)

Date

2018

Author

Özkaraca, Osman

Metadata

Show full item record

Abstract

Optimizing a complex system/problem under real working conditions with optimization methods means ensuring that they operate more efficiently, economical, and eco-friendly. For this purpose, in order to maximize the exergy efficiency of a thermodynamic model of a real operated geothermal power plant (GPP), two optimization methods, namely Gravitational Search Algorithm (GSA) and Artificial Bee Colony (ABC), have been comparatively evaluated in this study. The selected thermodynamic model is a problem that is highly complex, non-linear and unsolvable through mathematical methods. In order to solve the problem, 17 optimization parameters have been selected on the model. In addition, the selected parameters have been divided into 11 groups according to the system equipment specifications to reduce time loss. The results of the study reported that GSA and ABC maximized the exergy efficiency of the real system from 14.52% to 26.31% and 23.92% respectively. The effects of the optimized parameters on the model are observed, and it has been verified by GPP operators, engineers and researchers that no contrariety to logic and engineering discipline existed. Hence, the results of GSA method for the engineering problem addressed in this study are better than those of ABC method and they responded in a much shorter time. The most effective group in both methods is the G3 group related to the turbines. Besides, the most effective optimization parameters on the system performance are the pressure differences in evaporators and mass flow of the geothermal fluid. (C) 2018 Elsevier Ltd. All rights reserved.

Source

Energy

Volume

165

URI

https://doi.org/10.1016/j.energy.2018.09.130
https://hdl.handle.net/20.500.12809/1257

Collections

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.