Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T14:50:52Z
dc.date.available2020-11-20T14:50:52Z
dc.date.issued2018
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.urihttps://doi.org/10.1080/03610918.2017.1353615
dc.identifier.urihttps://hdl.handle.net/20.500.12809/1637
dc.descriptionWOS: 000447188500005en_US
dc.description.abstractIn this paper, we propose modified spline estimators for nonparametric regression models with right-censored data, especially when the censored response observations are converted to synthetic data. Efficient implementation of these estimators depends on the set of knot points and an appropriate smoothing parameter. We use three algorithms, the default selection method (DSM), myopic algorithm (MA), and full search algorithm (FSA), to select the optimum set of knots in a penalized spline method based on a smoothing parameter, which is chosen based on different criteria, including the improved version of the Akaike information criterion (AICc), generalized cross validation (GCV), restricted maximum likelihood (REML), and Bayesian information criterion (BIC). We also consider the smoothing spline (SS), which uses all the data points as knots. The main goal of this study is to compare the performance of the algorithm and criteria combinations in the suggested penalized spline fits under censored data. A Monte Carlo simulation study is performed and a real data example is presented to illustrate the ideas in the paper. The results confirm that the FSA slightly outperforms the other methods, especially for high censoring levels.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCensored Dataen_US
dc.subjectKaplan-Meier Estimatoren_US
dc.subjectNonparametric Regressionen_US
dc.subjectPenalized Splinesen_US
dc.subjectSynthetic Dataen_US
dc.titleModified spline regression based on randomly right-censored data: A comparative studyen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1080/03610918.2017.1353615
dc.identifier.volume47en_US
dc.identifier.issue9en_US
dc.identifier.startpage2587en_US
dc.identifier.endpage2611en_US
dc.relation.journalCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster