• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel diagnosis system for Parkinson's disease using complex-valued artificial neural network with k-means clustering feature weighting method

Thumbnail

Göster/Aç

Tam metin / Full text (465.5Kb)

Tarih

2017

Yazar

Gürüler, Hüseyin

Üst veri

Tüm öğe kaydını göster

Özet

Parkinson's disease (PD) is a degenerative, central nervous system disorder. The diagnosis of PD is difficult, as there is no standard diagnostic test and a particular system that gives accurate results. Therefore, automated diagnostic systems are required to assist the neurologist. In this study, we have developed a new hybrid diagnostic system for addressing the PD diagnosis problem. The main novelty of this paper lies in the proposed approach that involves a combination of the k-means clustering-based feature weighting (KMCFW) method and a complex-valued artificial neural network (CVANN). A Parkinson dataset comprising the features obtained from speech and sound samples were used for the diagnosis of PD. PD attributes are weighted through the use of the KMCFW method. New features obtained are converted into a complex number format. These feature values are presented as an input to the CVANN. The efficiency and effectiveness of the proposed system have been rigorously evaluated against the PD dataset in terms of five different evaluation methods. Experimental results have demonstrated that the proposed hybrid system, entitled KMCFW-CVANN, significantly outperforms the other methods detailed in the literature and achieves the highest classification results reported so far, with a classification accuracy of 99.52 %. Therefore, the proposed system appears to be promising in terms of a more accurate diagnosis of PD. Also, the application confirms the conclusion that the reliability of the classification ability of a complex-valued algorithm with regard to a real-valued dataset is high.

Kaynak

Neural Computing & Applications

Cilt

28

Sayı

7

Bağlantı

https://doi.org/10.1007/s00521-015-2142-2
https://hdl.handle.net/20.500.12809/1922

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.