• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-healing capability of large-scale engineered cementitious composites beams

Thumbnail

View/Open

Tam metin / Full text (2.142Mb)

Date

2016

Author

Keskin, Süleyman Bahadır
Keskin, Özlem Kasap
Anıl, Özgür
Sahmaran, Mustafa
Alyousif, Ahmed
Lachemi, Mohamed
Ashour, Ashraf F.

Metadata

Show full item record

Abstract

Engineered Cementitious Composites (ECC) is a material which possesses advanced self-healing properties. Although the self-healing performance of ECC has been revealed in numerous studies, only smallscale, laboratory-size specimens have been used to assess it under fixed laboratory conditions and curing techniques. In order to evaluate the effect of intrinsic self-healing ability of ECC on the properties of structural-size, large-scale reinforced-beam members, specimens with four different shear span to effective depth (a/d) ratios, ranging from 1 to 4, were prepared to evaluate the effects of shear and flexural deformation. To ensure a realistic assessment, beams were cured using wet burlap, similar to on site curing. Each beam was tested for mechanical properties including load-carrying capacity, deflection capacity, ductility ratio, yield stiffness, energy absorption capacity, and the influence of self-healing, by comparing types of failure and cracking. Self-healed test beams showed higher strength, energy absorption capacity and ductility ratio than damaged test beams. In test beams with an a/d ratio of 4 in which flexural behavior was prominent, self-healing application was highly successful; the strength, energy absorption capacity and ductility ratios of these beams achieved the level of undamaged beams. In addition, flexural cracks healed better, helping recover the properties of beams with predominantly flexural cracks rather than shear cracks. (C) 2016 Elsevier Ltd. All rights reserved.

Source

Composites Part B-Engineering

Volume

101

URI

https://doi.org/10.1016/j.compositesb.2016.06.073
https://hdl.handle.net/20.500.12809/2362

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [68]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.