dc.contributor.author | Gökmen, Elçin | |
dc.contributor.author | Işık, Osman Raşit | |
dc.contributor.author | Sezer, Mehmet | |
dc.date.accessioned | 2020-11-20T15:04:40Z | |
dc.date.available | 2020-11-20T15:04:40Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2015.06.110 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/2914 | |
dc.description | WOS: 000361769000059 | en_US |
dc.description.abstract | In this study, a numerical approach is proposed to obtain approximate solutions of the system of nonlinear delay differential equations defining Lotka-Volterra prey predator model. By using the Taylor polynomials and collocation points, this method transforms the population model into a matrix equation. The matrix equation corresponds to a system of nonlinear equations with the unknown Taylor coefficients. Numerical examples are also given to demonstrate the validity and applicability of the presented technique. The method is easy to implement and produces accurate results. All numerical computations have been performed on the computer algebraic system Maple 15. (C) 2015 Elsevier Inc. All rights reserved. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | Elsevier Science Inc | en_US |
dc.item-rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Lotka-Volterra Prey-Predator Model | en_US |
dc.subject | System of Nonlinear Delay-Differential Equations | en_US |
dc.subject | Taylor Polynomials and Series | en_US |
dc.subject | Collocation Points | en_US |
dc.title | Taylor collocation approach for delayed Lotka-Volterra predator-prey system | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ, Eğitim Fakültesi, Matematik Ve Fen Bilimleri Eğitimi Bölümü | en_US |
dc.contributor.authorID | 0000-0003-1401-4553 | |
dc.identifier.doi | 10.1016/j.amc.2015.06.110 | |
dc.identifier.volume | 268 | en_US |
dc.identifier.startpage | 671 | en_US |
dc.identifier.endpage | 684 | en_US |
dc.relation.journal | Applied Mathematics and Computation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |