Basit öğe kaydını göster

dc.contributor.authorÖztürk, Yalçın
dc.contributor.authorAnapalı, Ayşe
dc.contributor.authorGülsu, Mustafa
dc.contributor.authorSezer, Mehmet
dc.date.accessioned2020-11-20T16:20:34Z
dc.date.available2020-11-20T16:20:34Z
dc.date.issued2013
dc.identifier.issn1110-757X
dc.identifier.issn1687-0042
dc.identifier.urihttps://doi.org/10.1155/2013/598083
dc.identifier.urihttps://hdl.handle.net/20.500.12809/3920
dc.descriptionWOS: 000323971500001en_US
dc.description.abstractWe have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential equation with delay term. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, we have the system of nonlinear algebraic equation. Then, we solve the system of nonlinear algebraic equation using Maple 13, and we have the coefficients of the truncated Taylor sum. In addition, illustrative examples are presented to demonstrate the effectiveness of the proposed method. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate.en_US
dc.item-language.isoengen_US
dc.publisherHindawi Ltden_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleA Collocation Method for Solving Fractional Riccati Differential Equationen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Ula Ali Koçman Meslek Yüksekokulu, Finans Bankacılık Ve Sigortacılık Bölümüen_US
dc.identifier.doi10.1155/2013/598083
dc.relation.journalJournal of Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster