Basit öğe kaydını göster

dc.contributor.authorGöktaş, Atila
dc.contributor.authorAkkuş, Özge
dc.date.accessioned2020-11-20T14:39:23Z
dc.date.available2020-11-20T14:39:23Z
dc.date.issued2020
dc.identifier.issn0094-9655
dc.identifier.issn1563-5163
dc.identifier.urihttps://doi.org/10.1080/00949655.2020.1793342
dc.identifier.urihttps://hdl.handle.net/20.500.12809/405
dc.descriptionWOS: 000550105200001en_US
dc.description.abstractThe purpose of this study is to compare the Partial Least Squares (PLS), Ridge Regression (RR) and Principal Components Regression (PCR) methods, used to fit regressors with severe multicollinearity against a dependent variable. To realize this, a great number of varying groups of datasets are generated from standard normal distribution allowing for the inclusion of different degrees of collinearities for 10000 replications. The design of the study is based on a simulation work that has been performed for six different degrees of multicollinearity levels and sample sizes. From the generated data, a comparison is made using the value of mean squares error of the regression parameters. The findings show that each prediction method is affected by the sample size, number of regressors or multicollinearity level. However, in contrast to literature (sayn200), whatever the number of regressors is, PCR had significantly better results compared to the other two.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPartial Least Squaresen_US
dc.subjectRidge Regressionen_US
dc.subjectPrincipal Components Regressionen_US
dc.subjectMulticollinearityen_US
dc.titleComparison of partial least squares with other prediction methods via generated dataen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorGöktaş, Atila
dc.contributor.institutionauthorAkkuş, Özge
dc.identifier.doi10.1080/00949655.2020.1793342
dc.identifier.volume90en_US
dc.identifier.issue16en_US
dc.identifier.startpage3009en_US
dc.identifier.endpage3024en_US
dc.relation.journalJournal of Statistical Computation and Simulationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster