• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Biosensor Based on Bay Leaf (Laurus nobilis L.) Tissue Homogenate: Improvement of the Stability Characteristics by a Simple Bio-imprinted Technique

Date

2008

Author

Teke, Mustafa
Sezginturk, Mustafa Kemal
Dinckaya, Erhan

Metadata

Show full item record

Abstract

Although enzymes are effective biocatalysts that are widely used in biosensors, a major drawback that hampers many of these biotechnological applications of enzymes is their limited stability. Applications that use very pure, high value proteins need to employ effective stabilization technology, primarily due to cost considerations and availability of the proteins used. For this purpose, interest in bio-imprinting techniques increases because it allows stability characteristics of enzymes to be improved. In this study, a bio-imprinted Bay leaf (Laurus nobilis L.) tissue homogenate biosensor was devised by a very simple way. For this purpose, the enzymes, polyphenol oxidases in the bay leaf tissue, were first complexed by using their competitive inhibitor, thiourea, in aqueous medium and then this enzyme was immobilized on gelatin by crosslinking with glutaraldehyde on a Clark-type oxygen electrode surface. Similarly, noncomplexed polyphenol oxidase with thiourea was also immobilized on a Clark-type oxygen electrode in the same conditions. The aim of the study was to prepare a new biosensor-based Bay leaf tissue homogenate and to improve the stability characteristics such as thermal stability, pH stability, and storage stability, of the biosensor by bio-imprinting method. The results showed that this simple technique should be effectively used to improve the stabilities of a biosensor.

Source

Artificial Cells Blood Substitutes and Biotechnology

Volume

36

Issue

5

URI

https://doi.org/10.1080/10731190802375794
https://hdl.handle.net/20.500.12809/4989

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.