Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.authorİşçi Güneri, Öznur
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T16:50:14Z
dc.date.available2020-11-20T16:50:14Z
dc.date.issued2020
dc.identifier.issn0094-9655
dc.identifier.urihttps://doi.org/10.1080/00949655.2020.1838523
dc.identifier.urihttps://hdl.handle.net/20.500.12809/6228
dc.description.abstractThis paper presents different ridge type estimators based on maximum likelihood ((Formula presented.)) for parameters of a Tobit model. In this context, an algorithm is introduced to get the estimators based on (Formula presented.). The most important issue in implementing these estimators is the selection of the optimum shrinkage parameter. Here attention is focused on the way in which the shrinkage parameter can be selected by six selection methods, including improved Akaike information criterion ((Formula presented.)), Bayesian information criterion ((Formula presented.)), generalized cross-validation ((Formula presented.)), risk estimation using classical pilots ((Formula presented.)), Mallows’ ((Formula presented.)) and (Formula presented.) proposed by Kibria [Performance of some new ridge regression estimators. Commun Stat Simul Comput. 2003;32:419–435]. Monte Carlo simulation experiments are performed and a real data example is presented to illustrate the ideas in the paper. Hence, an appropriate selection criterion or criteria are provided for optimum shrinkage parameter. © 2020 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.item-language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcensored dataen_US
dc.subjectMaximum likelihooden_US
dc.subjectridge estimatoren_US
dc.subjectselection criteriaen_US
dc.titleOptimum shrinkage parameter selection for ridge type estimator of Tobit modelen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorİşçi Güneri, Öznur
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1080/00949655.2020.1838523
dc.relation.journalJournal of Statistical Computation and Simulationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster