• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of content-based SMS classification application by using Word2Vec-based feature extraction

Thumbnail

Göster/Aç

Tam metin / Full text (2.939Mb)

Tarih

2019

Yazar

Ballı, Serkan
Karasoy, Onur

Üst veri

Tüm öğe kaydını göster

Özet

While mobile instant messaging applications such as WhatsApp, Messenger, Viber offer benefits to phone users such as price, easy usage, stable, collective and direct communication, SMS (short message service) is still considered a more reliable privacy-preserving technology for mobile communication. This situation directs the institutions that want to perform the product promotion such as advertising, informing, promotion etc. to use SMS. However, spam messages sent from unknown sources constitute a serious problem for SMS recipients. In this study, a content-based classification model which uses the machine learning to filter out unwanted messages is proposed. From the selected dataset, the model to be used in the classification is created with the help of Word2Vec word embedding tool. Thanks to this model, two new features are revealed for calculating the distances of messages to spam and ham words. The performances of the classification algorithms are compared by taking these two new features into consideration. The random forest method succeeded with a correct accuracy rate of 99.64%. In comparison to other studies using the same dataset, more successful correct classification percentage is achieved. © The Institution of Engineering and Technology 2018.

Kaynak

IET Software

Cilt

13

Sayı

4

Bağlantı

https://doi.org/10.1049/iet-sen.2018.5046
https://hdl.handle.net/20.500.12809/6308

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.