• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance Prediction of Circular Diamond Saws by Artificial Neural Networks and Regression Method Based on Surface Hardness Values of Mugla Marbles, Turkey

Thumbnail

Göster/Aç

Tam metin / Full text (179.5Kb)

Tarih

2019

Yazar

Güney, Avni

Üst veri

Tüm öğe kaydını göster

Özet

Sawing of natural stones with diamond-impregnated circular saws is extensively implemented in stone processing plants in variety of applications that include sawing, cutting, splitting and trimming. Hence, the cost of diamond saws and energy have become important input in terms of estimating the hourly areal slab productions (HASPs) from the standpoint of effective cost analyses, feasible and sustainable designing of stone processing plants prior to reaching a decision for the investment. This study aimed at estimating the HASPs of the machines with circular diamond saws during the dimensioning of marble blocks quarried in Mugla (Turkey) Region. Thus, the models were generated to estimate the HASPs by artificial neural networks (ANN) and regression method (RM), based on Shore and Schmidt hardness values of rocks. Also, HASPs were acquired through in-plant measurements in order to justify the HASPs estimated by ANN and RM models. The analyses of the models generated using ANN proved to yield very strong consistencies with HASPs measured in the plants. Hence, the HASPs can be estimated reliably by the ANN models which also may be considered as a tool in designing of natural stone processing plants based on rock surface hardness.

Kaynak

Journal of Mining Science

Cilt

55

Sayı

6

Bağlantı

https://doi.org/10.1134/S1062739119066356
https://hdl.handle.net/20.500.12809/780

Koleksiyonlar

  • Maden Mühendisliği Bölümü Koleksiyonu [60]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.