Basit öğe kaydını göster

dc.contributor.authorÖzdemir, Engin
dc.contributor.authorBallı, Serkan
dc.date.accessioned2021-04-01T13:21:07Z
dc.date.available2021-04-01T13:21:07Z
dc.date.issued2020en_US
dc.identifier.citationÖzdemir, E., Ballı, S., (2020). Türkiye Erkekler Basketbol Ligi Maç Sonuçlarının Makine Öğrenmesi Yöntemleri ile Tahmini, Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 740-752.en_US
dc.identifier.urihttps://doi.org/10.21923/jesd.723109
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9134
dc.description.abstractBasketbol maçları dünyada en çok izlenen spor aktivitelerinden birisidir. Bu popülerlik sonucunda basketbol sporunda bilgi teknolojileri sık sık kullanılmaktadır. İstatistik ve veri depolama sistemlerinin gelişmesiyle maç istatistikleri, oyuncu özellikleri gibi parametreler artık çok kolay saklanabilmektedir. Müsabaka sonucu tahmini insanlara müsabaka öncesi bilgi vermesi açısından önemlidir. Müsabaka sonucu tahmini ile ilgili olarak Amerikan basketbol ligleri üzerine çalışmalar mevcut iken Avrupa basketbolu ligleri üzerine çalışmaların sayısı azdır. Literatürde bir ilk olarak bu çalışmada, müsabaka sonucu tahmini için Türkiye Erkekler Basketbol Süper Ligi maçları Dört Faktör ve DefansOfans modeli ile makine öğrenmesi yöntemleri beraber kullanılarak ele alınmıştır. Buna göre 2017-2018 tarihlerinde oynanan maçlar veri seti olarak kullanılmış ve Dört Faktör modeli ile birlikte incelenmiştir. Popüler makine öğrenmesi yöntemleri olan kNN, Lojistik Regresyon, Çok Katmanlı Algılayıcı, Naive Bayes, j48 ve Oylama ile kullanılmış ve çıkan sonuçlar değerlendirilmiştir. Sonuç olarak %96,55’lik tahmin başarısı yakalanmıştır.en_US
dc.description.abstractBasketball competitions are one of the most watched sports activities in the world. As a result of this popularity, information technologies are frequently used in basketball. With the development of statistics and data storage systems, parameters such as match statistics, player properties can now be stored very easily. The prediction of the competition result is important in that it provides information to people before the competition. While there are studies on American basketball leagues in this topic, there are few studies on European basketball leagues. As a first in the literature in this study, results of competitions for Turkish Men's Basketball Super League game prediction were examined by using Four Factor model, DefenseOfense model and machine learning methods together. Accordingly, the matches played between 2017-2018 were used as data set and examined together with the Four Factor model. Popular machine learning methods; kNN, Logistic Regression, Multilayer Perceptron, Naive Bayes, j48 and Voting were used and the results were evaluated. As a result, 96.55% predicted success was achieved.en_US
dc.item-language.isoturen_US
dc.publisherSüleyman Demirel Üniversitesien_US
dc.relation.isversionof10.21923/jesd.723109en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTürkiye Basketbol Ligien_US
dc.subjectDört faktören_US
dc.subjectMakine öğrenmesien_US
dc.subjectTahminen_US
dc.titleTÜRKİYE ERKEKLER BASKETBOL LİGİ MAÇ SONUÇLARININ MAKİNE ÖĞRENMESİ YÖNTEMLERİ İLE TAHMİNİen_US
dc.item-title.alternativePREDICTION OF TURKISH MEN’S BASKETBALL SUPER LEAGUE GAME RESULTS WITH MACHINE LEARNING METHODSen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Teknoloji Fakültesi, Bilişim Sistemleri Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-6740-8444en_US
dc.contributor.institutionauthorÖzdemir, Engin
dc.contributor.institutionauthorBallı, Serkan
dc.identifier.volume8en_US
dc.identifier.issue3en_US
dc.identifier.startpage740en_US
dc.identifier.endpage752en_US
dc.relation.journalMühendislik Bilimleri ve Tasarım Dergisien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster