• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller Design for Quadrotors

Thumbnail

View/Open

Tam metin / Full text (1.899Mb)

Date

2021

Author

Tilki, Umut
Erüst, Ali Can

Metadata

Show full item record

Citation

Tilki, U. and A. C. Erüst. 2021. "Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller Design for Quadrotors." Journal of Intelligent and Robotic Systems: Theory and Applications 103 (2). doi:10.1007/s10846-021-01475-2.

Abstract

Nowadays, small structured unmanned aerial vehicles (UAVs) with four-rotor (Quadrotor) appear in every part of human life works. As the usage areas of the air vehicles become widespread, the development of controller structures which allows the quadrotor to track a specified trajectory precisely is a new research area of interest for researchers. In this work, the nonlinear mathematical model of a four-rotor UAV is obtained by using Newton-Euler method. In the trajectory tracking system of this quadrotor, a new controller structure which is called Robust Adaptive Backstepping Global Fast Dynamic Terminal Sliding Mode Controller (RABGFDTSMC) is designed. In this controller structure, the control process is divided into two subsystems in order to provide position and attitude control. RABGFDTSMC is applied to the fully actuated and underactuated subsystems individually. Coefficients of the controller is obtained by using pre-defined characteristic equation. Besides, overall system stability is proved with the Lyapunov function. To demonstrate the effectiveness of the proposed controller, simulation experiments are conducted in MATLAB/ Simulink environment. The simulation results of the proposed controller are compared with the global fast dynamic terminal sliding mode controller by means of trajectory tracking performance in steady-state and transient phases. As a result, the proposed controller RABGFDTSMC method proved its robustness according to the smaller steady state error with less oscillations and more precise flight performance in trajectory tracking.

Source

Journal of Intelligent and Robotic Systems: Theory and Applications

Volume

103

Issue

2

URI

https://doi.org/10.1007/s10846-021-01475-2
https://hdl.handle.net/20.500.12809/9535

Collections

  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.