• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Yazılım Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Yazılım Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Transfer Learning Approach for Securing Resource-Constrained IoT Devices

Thumbnail

Göster/Aç

Tam metin / Full text (2.195Mb)

Tarih

2021

Yazar

Yılmaz, Selim
Aydoğan, Emre
Şen, Sevil

Üst veri

Tüm öğe kaydını göster

Künye

[1]S. Yilmaz, E. Aydogan, and S. Sen, “A Transfer Learning Approach for Securing Resource-Constrained IoT Devices”, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 4405–4418, 2021.

Özet

In recent years, Internet of Things (IoT) security has attracted significant interest by researchers due to new characteristics of IoT such as heterogeneity of devices, resource constraints, and new types of attacks targeting IoT. Intrusion detection, which is an indispensable part of a security system, is also included in these studies. In order to explore the complex characteristics of IoT, machine learning methods, which rely on long training time to generate intrusion detection models, are proposed in the literature. Furthermore, these systems need to learn a new/fresh model from scratch when the environment changes. This study explores the use of transfer learning in order to generate intrusion detection algorithms for such dynamically changing IoT. Transfer learning is an approach that stores knowledge learned from a problem domain/task and applies that knowledge to another problem domain/task. Here, it is employed in the following two settings: transferring knowledge for generating suitable intrusion algorithms for new devices, transferring knowledge for detecting new types of attacks. In this study, Routing Protocol for Low-Power and Lossy Network (RPL), a routing protocol for resource-constrained wireless networks, is used as an exemplar protocol and specific attacks against RPL are targeted. The experimental results show that the transfer learning approach gives better performance than the traditional approach. Moreover, the proposed approach significantly reduces learning time, which is an important factor for putting devices/networks in operation in a timely manner. Even though transfer learning has been considered a potential candidate for improving IoT security, to the best of our knowledge, this is the first application of transfer learning under these two settings in RPL-based IoT networks.

Kaynak

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Cilt

16

Bağlantı

https://hdl.handle.net/20.500.12809/9550

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]
  • Yazılım Mühendisliği Bölümü Koleksiyonu [11]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.