• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Artificial Intelligence Based Decision Support and Resource Management System for COVID-19 Pandemic

Thumbnail

Göster/Aç

Tam metin / Book chapter (2.492Mb)

Tarih

2021

Yazar

Aydın, Doğan
Karaarslan, Enis

Üst veri

Tüm öğe kaydını göster

Künye

Karaarslan, Enis, and Doğan Aydın. "An artificial intelligence–based decision support and resource management system for COVID-19 pandemic." Data Science for COVID-19. Academic Press, 2021. 25-49.

Özet

COVID-19 crisis has shown that the World is not ready for such a rapid spread of a virus resulting in a catastrophic pandemic. Effective use of information technologies is one of the key aspects in reducing the adverse effects of any epidemic or pandemic. Existing management systems have failed to fulfill requirements for curbing the rapid spread of the virus. This chapter firstly describes the current solutions by giving real-world examples. Then, we propose an epidemic management system (EMS) that relies on unimpeded and timely information flow between nations and organizations to ensure resources are distributed effectively. This system will use mobile technology, blockchain, epidemic modeling, and artificial intelligence technologies. We used the Multiplatform Interoperable Scalable Architecture (MPISA) model that allows the integration of multiple platforms and provides a solution for scalability and interoperability problems. Open data repositories and the MiPasa blockchain are also described. These relevant data can be used to predict the potential future spread of the epidemic. Selecting the correct methods for epidemic modeling is discussed as well. Another challenge is deciding on allocating resources where they are most necessary; we propose deploying automated machine learning and stochastic epidemic model-based decision support systems for such purposes. Citizens should not have privacy concerns about the information systems. These trust issues and privacy concerns can be solved by using decentralized identity and zero-knowledge proof-based mechanisms. These mechanisms will ensure that users are in control of their data. In this chapter, we also discuss choosing the right machine learning method, privacy measures, and how the performance challenges can be addressed. This chapter concludes on a discussion of how we can design and deploy better EMSs and possible future studies.

Kaynak

Data Science for COVID-19 Volume 1: Computational Perspectives

Cilt

1

Bağlantı

https://doi.org/10.1016/B978-0-12-824536-1.00029-0
https://hdl.handle.net/20.500.12809/9936

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [103]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.