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ABSTRACT
This paper presents different ridge type estimators based on max-
imum likelihood (ML) for parameters of a Tobit model. In this con-
text, an algorithm is introduced to get the estimators based on
ML. The most important issue in implementing these estimators
is the selection of the optimum shrinkage parameter. Here atten-
tion is focused on the way in which the shrinkage parameter can
be selected by six selection methods, including improved Akaike
information criterion (AICc), Bayesian information criterion (BIC), gen-
eralized cross-validation (GCV), risk estimation using classical pilots
(RECP), Mallows’ (Cp) and k̂GM proposed by Kibria [Performance of
some new ridge regression estimators. Commun Stat Simul Com-
put. 2003;32:419–435]. Monte Carlo simulation experiments are per-
formed and a real data example is presented to illustrate the ideas
in the paper. Hence, an appropriate selection criterion or criteria are
provided for optimum shrinkage parameter.

ARTICLE HISTORY
Received 1 May 2020
Accepted 14 October 2020

KEYWORDS
Maximum likelihood;
censored data; ridge
estimator; selection criteria

1. Introduction

Censored regressionmodels are developed to describe the functional relationship between
a dependent (or response) variable and a set of explanatory variables in which the response
variable is subject to censoring. Formally, we assume that the basis of these models is a
classical linear regression model with uncorrelated, normally distributed error terms,

zi = x′
iβ + εi, εi ∼ N(0, σ 2), i = 1, 2, . . . , n (1)

where zis are the observations of the response variable, xi = (xi1, . . . , xip)′ is an n × 1 vec-
tor containing the observations of p-dimensional explanatory variables, β = (β1, . . . ,βp)′
is an p × 1 vector of unknown regression parameters to be estimated, and εis should be
normal random variables with a mean of zero and a common variance σ 2, as indicated
in (1).

Note that the standard assumption of the error term implies that the values of the
response variable in a regression model can be any real number; however, in many sta-
tistical applications, they are observed incompletely. In this case, the model (1) estimated
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by ordinary least squares (OLS) is improper since OLS regression leads to biased estimates.
The error terms of thismodel are correlated and non-normally distributed. Consistent esti-
mates in the case of censored data can be obtained by a censored regressionmodel. Perhaps
the most common example of such a regression model is the standard Tobit model [1]:

yi = max(0, zi), zi ∼ N(x′
iβ , σ

2In) (2)

where yis are the observations of the censored response variable. One should note that, in
practice, the values of zi are unobserved, whereas the values of response yi are observed
due to left censoring. It should be emphasized that the model (2) is first discussed by Tobin
[2] in economics.He analysed household expenditure (response variable) on durable goods
(explanatory variables) across a year by considering that the values of the response variable
could not be negative.

Note that if the explanatory variables are highly correlated, multi-collinearity becomes a
serious problem, which can dramatically influence the effectiveness of a Tobit model esti-
mated using the maximum likelihood (ML) method, as in the case of linear regression
model. The collinearity results in a large variance and covariance of the parameter esti-
mates andmay lead to a lack of statistical significance of individual parameters. A common
way to deal with this problem is to employ a ridge type regression estimator, originally pro-
posed by Hoerl and Kennard [3]. In the literature, Tobit models are considered in different
applications (see [1,4]). Note also that, there are important studies on different type of ridge
estimators such as Roozbeh [5] studied about shrinkage ridge estimators under different
error conditions Amini and Roozbeh [6] estimated partially linear model with ridge esti-
mation under correlated errors. Roozbeh [7] proposed a modified estimator based on QR
decomposition to overcome multicollinearity. In addition, Akdeniz and Roozbeh [8] and
Roozbeh et al. [9] can be counted among them.

In this paper, various ridge type estimators are considered for estimating the param-
eters of a Tobit model with collinear data. The most important aspect of this problem
is determining an optimum shrinkage parameter. The main objectives of this paper are
therefore to select optimal ridge parameters, compare five selection methods that are
AICc,BIC,GCV ,RECP,Cp, and commonly used criterion k̂GM . Note that k̂GM is a one of
the commonly used plug-in method for estimating the ridge parameter proposed by Kib-
ria [10]. As explained in Section 4, k̂GM uses the geometric mean of k̂i values calculated as
the ratio of the model’s error variance to the square of the estimates of the regression coef-
ficients (i.e. k̂i = σ̂ 2/β̂2i ). Also, see the study of Kibria [10] for more detailed discussions.
Thus, suitable ridge parameters can be found, and a good but parsimoniousmodel fit can be
obtained. For these purposes, thementioned six criteria are inspected under simulated and
real data settings. The value of the shrinkage parameter minimizing the information crite-
ria corresponds to the optimum balance of model complexity and model fit. Furthermore,
information criteria guide the process of making choices among various models. The basic
idea is to find a useful selection criterion that provides a good estimation of a Tobit model
based on the ML method which is given by Gajarado [11] and Khalaf et al. [12]. Due to
shrinkage parameter selection criteria, a comparison of the different ridge type estimators
is provided. In the literature, some selection methods for computing ridge parameters are
discussed and compared by Mansson and Shukur [13] and also, Haq and Kibria [14], Kib-
ria [10] can be counted as important studies to find optimal ridge parameter. However, the
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emphasis of this paper is on selection techniques based on information criteria rather than
on selection methods. In the literature, Fang [15], Aydın et al. [16] and Yılmaz et al. [17]
focused on using information criteria for the selection of the ridge parameter. Moreover,
partial regression residual plots are used in evaluating whether we correctly specified the
relationship between the dependent variable and the covariates. To the best of our knowl-
edge, a study including ridge type estimators based on different selection criteria has not
yet been conducted.

This paper is organized as follows. The estimation of a Tobit model based on maximum
likelihood is examined, and an algorithm for calculating the Tobit ridge estimator is given
in Section 2. In Section 3, statistical properties and characteristics of the estimator are dis-
cussed. Selectionmethods for finding optimum ridge parameter are explained in Section 4.
Section 5 contains the Monte Carlo simulation study. In Section 6, gross domestic prod-
uct (GDP) data is analysed with introduced method to see how it works using real-world
data. Finally, conclusions and recommendations are presented in Section 7. Supplemental
technical materials are found in the Appendix.

2. TheML estimation of a Tobit model

We consider the standard formulation for the Tobit model expressed in Equation (2). One
should note that the response variable z can be considered as a partially latent variable
whose values are concentrated at zero if they are negative. Hence, the model (2) can be
rewritten as

yi =
{
x′
iβ + εi = zi

0
if zi > 0
if zi ≤ 0 (3)

Note that yi and xi are observed completely, butziis unobserved if it is not positive (zi ≤
0) and is therefore a partially latent variable. It is clear from the definition of yi in (3) that
there are two cases to be considered: yi > 0 and yi = 0. Under the normality assumption
of the error term ε, the first case shows that, if yi > 0, we have the following conditional
probability density function (pdf):

f (yi|xi) = f (zi|xi) = 1
σ
√
2π

exp

[
−1
2
(yi − x′

iβ)
2

σ 2

]
= 1
σ
φ

(
yi − x′

iβ

σ

)
(4)

It should be noted that the term φ(.) is the pdf of the standard normal distribution.
However, the second case denotes that, if yi = 0, we have the mass probability

P(yi = 0) = P(zi < 0) = �

(
−x′

iβ

σ

)
= 1 −�

(
x′
iβ

σ

)
= 1 −�(vi) (5)

where �(.) shows the cumulative density function (cdf) of the standard normal distribu-
tion evaluated at vi = x′

iβ/σ , as defined above. According to the result of (4) and (5), we
can then define the conditional pdf of the censored response variable yi given xi as

f (yi|xi) = {f (zi|xi)}di × {P(yi = 0|xi)}1−di =
[
1
σ
φ

(
yi − x′

iβ

σ

)]di
× [1 −�(vi)]1−di

(6)
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where d is a dummy variable equal to 1 if zi > 0 and equal to zero otherwise. The likelihood
function of the Tobit model expressed in (3) is then stated as

L(β , σ) =
n∏

i=1
f (yi|xi) =

n∏
i=1

[
1
σ
φ

(
yi − x′

iβ

σ

)]di
× [1 −�(vi)]1−di (7)

This part of the paper focuses on the estimation of the unknown parameters β and
σ in the standard Tobit (or censored) regression model. In the estimation sense, the ML
method can be used to obtain consistent estimates of these parameters. Recall that response
observations are censored on the right, that all cases discussed here fall into this framework,
and that d is the indicator of censoring. In this case, for the standard Tobit model (3) with
the normal error terms, the natural log-likelihood function is

l(β , σ) = lnL(β , σ) =
n∑

i=1

⎡
⎣diln

[
1

σ
√
2π

exp
(

− 1
2

(
yi−x′

iβ
σ

)2)]
+(1 − di)ln(1 −�(vi))

⎤
⎦ . (8)

The maximum likelihood estimators are the parameter values, say β̂ML and σ̂ 2, that maxi-
mize lnL stated in (7) or, equivalently, l(.) given in (8). Thus, the ML estimator β̂ML of the
parameter vector β must satisfy

∂ lnL
∂β

=
n∑

i=1

(
di

{
−1
2
(yi − x′

iβ̂ML)

σ 2

}
+ (1 − di)log

(
1 −�

(
x′
iβ̂ML
σ

)))
xi = 0 (9)

The solution to Equation (9) gives themaximum likelihood estimator indicated by β̂ML.
In most applications of regression, however, it seems that there is a nearly perfect linear

relationship between the columns (covariates) ofX, and in such cases, the inferences based
on the regression model can be misleading or erroneous. Moreover, where there is multi-
collinearity, we know that the matrix (X′X) has one or more small eigenvalues. Hoerl and
Kennard [3] proposed the ridge regression estimator to overcome this type of problem
in linear regression analysis. In this paper, we generalize Hoerl and Kennard’s [3] ridge
estimator for the Tobit (or censored) regression.

2.1. Tobit ridge regression estimator

The presence of multi-collinearity has a number of potentially serious effects on the ML
estimates of a Tobit model, as indicated in the previous section. Consequently, traditional
methods proposed by Tobin [2] cannot be applied directly for estimating the parameter
vector β . To overcome this problem, we introduced a Tobit ridge regression estimator,
which is obtained by modifying the ML estimator (see [11]).

Suppose that n0 is the number of observations for yi = 0, and n1 is the number of obser-
vations for yi > 0. For simplicity, let us first introduce some notations expressed in the
following format [18]:

y1 = (y1, . . . yn1)
′ is a (n1 × 1) vector of nonzero values for yi

X1 = (x1, . . . , xn1)
′ is a (n × p)matrix entries of xi for nonzero values on yi
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X0 = (xn1+1, . . . , xn)′ is a (n0 × p)matrix entreis of xi corresponding to yi = 0

η0 = (ηn1+1, . . . , ηn)′ is a (n0 × 1) vector values of ηi corresponding to yi = 0

where elements of η0 can be obtained as ηi = φ(vi)/σ
1−�(vi) =

[
1
σ
φ
(
x′
iβ
σ

)]
/
[
1 −�

(
x′
iβ
σ

)]
.

Using these notations, the ordinary likelihood function stated in (7) can be rewritten as

L =
n∏

i=1

[
1
σ
φ

(
yi − x′

iβ

σ

)]di
× [1 −�(vi)]1−di

=
∏
1

[
1
σ
φ

(
yi − x′

iβ

σ

)]
×
∏
0
[1 −�(vi)] (10)

Here, it should be emphasized that the first terms of (10) are based on sample size n1
for which yi > 0, while the second terms are based on sample size n0 for observations
where yi = 0. As previously indicated, the key idea is to estimate the parameters of the
Tobit model by using a ridge regression based on ML. To achieve this, we added a penalty
term to the likelihood function in (10), as in ordinary ridge regression. In light of these
ideas for a given k > 0, the penalized ML criterion of (10) becomes

Lpen = L + k
2
β2
2 (11)

where k
2β

2
2 is the penalty term for the ridge regularization and k is a ridge parameter.

See Schaefer et al. [19] and Le Cessie and Van Houwelingen [20] for more detailed dis-
cussions about the ridge maximum likelihood. Penalized likelihood shrinks the ordinary
likelihood estimates with penalty terms, and it solves the multi-collinearity problem with
biased results.

The key idea is to obtain the TobitML ridge (MLR) estimator of the parameters inmodel
(3), as previously denoted. For these purposes, we first obtain the natural logarithmic
likelihood function of (11), given by

ln LPen =
∑
0

ln(1 −�(vi))+
∑
1

ln
(

1
σ
√
2π

)
−
∑
1

(
1

2σ 2 (yi − x′
iβ)

2
)

− k
2
β2
2 (12)

where
∑

0(.) is over the values n0 corresponding to yi = 0, whereas
∑

1(.) is over nonzero
observations n1 for yi. One may note that (12) is obtained by adding a penalty term to (8).
Tomaximize the likelihood in (12), we set its derivatives to zero. The first-order conditions
for providing the Tobit MLR estimator of β are

∂ lnLpen

∂β
= −

∑
0

φ(vi)xi
1 −�(vi)

+ 1
σ 2

∑
1
(yi − x′

iβ̂MLR)xi − kβ̂MLR = 0 (13)

Thus, after some algebraic manipulation, the Tobit MLR estimator is

β̂MLR = β̂R − σ(X′
1X1 + kIp)−1X′

0η0 (14)

where β̂R = (X′
1X1 + kIp)−1X1y1 is the ordinary ridge regression estimator using nonzero

values of yi. The implementation details of (14) are also provided in Appendix A1.



6 D. AYDIN ET AL.

Note that the vector η0 expressed in (14) depends on unknown parameters β and σ .
Furthermore, (14) shows that the ordinary ridge regression estimates fail to capture the full
effect of the covariates. Moreover, the estimator β̂MLR is also nonlinear in the parameters
and therefore must be solved iteratively. In light of Fair [21], we introduced an algorithm
based on iteration for obtaining theMLR estimator using (14). Details of the algorithm for
fitting model (2) are given as follows.

2.1.1. Algorithm

Step 1: Compute initial guesses β̂
(0) = β̂R = (X′

1X1 + kIp)X1y1 and (X
′
1X1 + kIp)X′

0.
Step 2: Choose a small positive number of σ , and denote this value by σ (0).
Step 3: Compute the vector η(0)0 using β(0) and σ (0).

Step 4: Calculate the β̂
(0)
MLR from (14) using η(0)0 ,β(0), and σ (0).

Step 5: Determine the new estimate as the maximizer of (12), given by

β̂
(1)
MLR = β(0) + λ(β̂

(0)
MLR − β(0)), 0 < λ ≤ 1. (15)

where λ is a damping factor used in (15).
Step 6. Repeat Steps 2 and 5 until the iterations converge.

One should also note that the experiments in the simulation study showed that β(0) =
0 was a good starting value for the iterative procedure, although convergence was never
guaranteed. However, if there are only a small number of censored values, β(0) = β̂R was a
good initial value for vectorβ . The parameter λ stated in step 5 ismany times useful in such
iterative processes to damp by taking λ to be less than one. Experience from simulation in
this study shows that the magnitude of λ controls the jumps in each iteration. Therefore,
the selection of the parameter λ is extremely important. In this context, some trials have
been made for different values of λ such as λ = 0.001, λ = 0.4 and λ = 1. It seems that
for λ = 0.001, the change in iterated estimates of β is really small, so the stability of the
iteration process requires hundreds of repetitions. Since the amount of change is too large
for a larger value of λ, the iteration for λ = 1 ends quickly, but does not give accurate
predictions. As discussed in the study of Fair [21], Olsen [22] and Gajarado [11], it appears
that the estimates provided with λ = 0.4 are numerically stabilized after 20 iterations. It is
appeared that the estimates provided by λ = 0.4 numerically stabilized after 20 iterations,
as discussed in the study of Fair [21], Olsen [22] and Gajarado [11].

3. Statistical properties of theMLR estimator

In this section, we summarize some properties of theMLR estimator β̂MLR defined by (14).
We know that the ridge estimator is a biased estimator, and this bias is proportional to the
parameterk. Consequently, for a given k > 0, the Tobit MLR estimator expressed in (14)
can be rewritten as

β̂MLR = (X1
′X1 + kIp)−1[X1

′X1β − σX0
′η0] (16)

and is abbreviated as

Ak = (X1
′X1 + kIp)−1. (17)
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The expected value, bias, and variance of the β̂MLR estimator, are respectively given as
follows:

E(β̂MLR) = Ak(X1
′X1β − σX0

′η0) = β − kAkβ − AkσX0
′η0 (18)

[Bias(β̂MLR)] = AkσX1
′η0 + kAkβ̂MLR (19)

Var(β̂MLR) = E
(

−∂
2logLpen

∂β∂β ′

)
= (X1

′RX1 + kIp)−1 (20)

whereR is a n × n diagonalmatrix, which is formed by its diagonal elements ri values given
by

ri = − 1
σ 2

(
viφ(vi)− φ(vi)2

1 −�(vi)
−�(vi)

)
, i = 1, . . . , n

where φ(.) and �(.) denote the density and cumulative distribution function of standard
normal distribution, respectively. The implementation details of Equations (19–20) can be
found in Appendix A2.

The studies of Amemiya [18] and Van Wieringen [23] are helpful for understanding
the variance of the parameters stated in (20). However, the expressions stated in Equa-
tions (18–20) are not directly usable since they depend on the unknown quantity σ 2. One,
therefore, needs to determine an estimation for the variance σ 2. In a standard Tobit model,
the estimate of this variance can be found by using residual sum of squares, as in OLS.
Consequently, the estimate of the error variance is

σ̂ 2 = (y − Xβ̂MLR)
′(y − Xβ̂MLR)/n (21)

It should be noted that the numerator of (21) represents the error terms arising from
the measurements of ignored factors. The resulting estimator σ̂ 2 is also essentially biased.
See Greene [24], [25] and Sun et al. [26] for the detailed asymptotic properties and bias of
the estimator σ̂ 2.

3.1. Measuring the risk and efficiency

The bias stated in the previous section is only one criterion for evaluating the quality of an
estimator. In general, the ill-effects of the deviation of β̂MLR from β are referred to as the
loss of information. Usually, the expected loss of an estimator β̂MLR is measured by risk.
This measurement is called the mean dispersion error (MDE). Our task is now to estimate
the risk for the standard Tobit model. For convenience, we will work with the scalar-valued
MDEmatrix.

Definition 1: The risk is closely related to the matrix-valuedMDE of an estimator β̂MLR
of the vector β . The scalar-valued version of theMDEmatrix is defined as

SMDE(β̂MLR,β) =
p∑

j=1
E(β̂MLRj − βj)

2 = tr{MDE(β̂MLR,β)} (22)
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where tr(A) denotes the trace of a matrix A. It should be also noted that the first term on
the right side of (22) is the squared error loss, described as L = (β̂MLRj − βj)

2. In such a
case, the risk of the estimator β̂MLRj, E(β̂MLRj − βj)

2 is calledMDE. It can also be given as
follows:

p∑
j=1

E(β̂MLRj − βj)
2

= E(β̂MLR − β2) = [Var(β̂MLR)] + [Bias(β̂MLR)]
T[Bias(β̂MLR)] = MDE. (23)

This equationmeans that theMDE of an estimator is the sumof its variance and squared
error. By applying (18–20), theMDEmatrix stated in (23) can be rewritten as

MDE(β̂MLRj,βj) =
p∑

j=1
E(β̂MLR,j − βj)

2 = (X1
′RX1 + kIp)−1 + [AkσX0

′η0 + kAkβ]2.

(24)

In other terms, the scalar-valued version of the MDE matrix (SMDE) in (22) can also
be given by the following equation

SMDE(β̂MLR,β) = tr{MDE(β̂MLR,β)}
= tr{(X1

′RX1 + kIp)
−1 + [AkσX1

′η0 + kAkβ]
2}. (25)

We can compare the quality of two estimators by looking at the ratio of their SMDE in
(22) or (25). This ratio gives the following definition concerning the superiority of any two
estimators.

Definition 3.2:Themeasure of the efficiency of an estimator β̂MLR1 relative to estimator
β̂MLR2 is obtained by the ratio

RE(β̂MLR1, β̂MLR2) = R( β̂MLR2,β)

R(β̂MLR1,β)
= SMDE(β̂MLR2)

SMDE(β̂MLR1)
(26)

where R(.) denotes the scalar risk, which is also equivalent to (25). One should note that in
comparing the efficiency of estimators, if RE(β̂MLR1, β̂MLR2) > 1, it can be said that β̂MLR1
is more efficient than β̂MLR2.

3.2. Asymptotic properties ofMLR estimators

Equation (3) shows that the Tobit model uses only positive response values. Therefore, for
positive values of yi, the model can be written as follows

E[yi|yi〉0] = xi′β + E(εi|εi〉 − xi′β) = xi′β + σ
φ(vi)
�(vi)

. (27)

One can see that E(εi|εi〉 − x′
iβ) is obtained nonzero even if εi is not normally dis-

tributed. Consequently, one may say that when positive values of yi are used, estimators
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will be biased in terms of Tobit model estimation. It should also be said, as indicated in
(19), β̂MLR already has a bias term which is caused by a ridge penalty.

Goldberger [27] and Greene [24] evaluated the asymptotic bias for the OLS estimator
of a Tobit model when data does not contain multicollinearity as

lim
n→∞ P{|θ̂ − θ | > δ} = 0, which means θ̂

p→ θ (28)

where θ = (β , σ 2)′ and θ̂ = (β̂ , σ̂ 2)′ for given δ > 0. Note that convergence in (28) is valid
when the below assumptions are ensured:

A1. Elements of explanatory variables xi normally distributed;
A2. xi is independent from error terms εi.

In this case, (3) can be written as follows

yi =
{

x̄′
iβ + εi = zi, if zi > 0

0 if zi ≤ 0

From assumptions A1 and A2, it follows that x̄i ∼ N(0,�), distributed independently
of εi. Accordingly, convergence can be written as follows

β̂
p→
[
(1 − ψ)

(1 − ω2ψ)

]
β (29)

where

ψ = 1
σy

h
(
β0

σy

)(
β0 + σyh

(
β0

σy

))
, h(α) = φ(α)

�(α)2

ω2 = 1
σ 2
y
β ′�β , σ 2

y = σ 2 + β ′�β

Note that because of 0 < ψ < 1 and 0 < ω2 < 1, it can be shown that theOLS estimator
of the Tobit model is biased. This was also proven by Goldberger [27] and Greene [24] as
follows under the same assumptions of A1 and A2:

β̂
p→�(β0/σy)β (30)

where β̂ is the vector of estimated regression coefficients by the OLS method for a Tobit
regression of yi on x̄i. Note that (30) is calculated using all observations of yi not only pos-
itive observations. It can therefore be said that

(
np
n β̂
)
is a consistent estimator of β where

np is a number of positive response values. It should be noted that all of these inferences
depend on the distribution of x̄i values, which is assumed to be normal.

In addition, to show asymptotic properties of the ridge-based estimator β̂MLR, some
regularity conditions are given below:

C1. β̂MLR minimizes the penalized maximum likelihood function (12);
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C2. The variance is a decreasing function when ridge parameter k is increasing (thus,
when k → ∞, the variance goes to zero);

C3. [Bias(β̂MLR)] decreases together with ridge parameter k, which means for k → 0,
[Bias(β̂MLR)]T[Bias(β̂MLR)] → 0 where [Bias(β̂MLR)]T[Bias(β̂MLR)] is a continu-
ous, monotonically increasing function of k (see [3]).

Under these conditions, asymptotic bias of β̂MLR can be expressed as

lim
n→∞[Bias(β̂MLR)] = lim

n→∞{AkσX1
′η0 + kAkβ̂MLR} (31)

Because of σ is dependent on sample size n which can be seen in Equation (21), when
n → ∞, (31) can be rearranged as

lim
n→∞[Bias(β̂MLR)] = lim

n→∞{kAkβ̂MLR} = kAkβ̂MLR

Thus, asymptotic bias of β̂MLR is obtained as kAkβ̂MLR. In this case, onemay say that this
bias is dependent on ridge parameter k and from condition C3, it is heuristically said that
when k → 0, [Bias(β̂MLR)] → 0. It is important to emphasize that because of the variance
statement in C2, ridge parameter k has to be properly selected to provide balance between
bias and variance.

4. Selection of the ridge parameter

There are various studies in the literature on choosing the ridge parameter k such as Hoerl
et al. [28], Golub et al. [29], Pasha and Shah [30], and so on. However, although these
researchers obtained reasonable results in choosing a ridge parameter, there are no abso-
lute rules. In this paper, to find optimum ridge parameter k for estimating the Tobit ridge
regression model, AICc, GCV , BIC,RECP, and Mollow’s Cp criteria were used and perfor-
mances were compared with both each other and k̂GM , as originally proposed by Kibria
[10]. k̂GM has also been used by Khalaf et al. [12], and it has given satisfying results under
certain conditions. This study uses it as a benchmark method. Our real purpose is to see
the effect of information criteria on selection of the ridge parameter. The six criteria that
were used in this paper are explained as follows.

AICc Criterion: It was proposed by Hurvich et al. [31] to make classical Akaike
information criterion robust for small sample sizes. Calculation of AICc is given by

AICc(k) = 1 + log[y − ŷ2/n] + [2{p + 1}/n − p − 2] (32)

where ŷ = Xβ̂MLR, and p denotes the number of regression parameters in the Tobit model.
BIC Criterion: Schwarz [32] proposed the BIC criterion by using Bayes estimators. The

BIC criterion is

BIC(k) = 1
n
y − ŷ2 +

(
log(n)
n

)
p. (33)

GCV Criterion: It was developed by Craven andWahba [33] and is calculated as follows

GCV(k) = n−1y − ŷ2/[n−1p]2 (34)
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RECP Criterion: This is a risk estimation using classical pilots (RECP) is used pilot
selection of ridge parameter k, kp, computes ŷkpand σ̂

2
p , and thenmeasures the risk between

ŷkp and y. To choose pilot, kp can be selected using one of the classical methods (see [34]).
The RECP score is defined as

RECP(k) = 1/n{y − ŷkp
2 + σ̂ 2

kpp
2} = 1/nEy − ŷkp

2. (35)

Cp Criterion : Mallows [35] proposed the Cp criterion for calculating the MDE in (23)
scaled by σ̂ 2. The criterion can be obtained as follows

Cp(k) = 1/n{y − ŷ2 + 2σ 2p − σ 2} = 1/n{y − ŷ2 + 2σ 2p − σ 2}. (36)

In practice, σ 2 is generally unknown. In this case, it has to be estimated with Equation
(21). For details on the Cp, see Mallows [35] and Liang [36].

The k̂GM method: The k̂GM was proposed by Kibria [10] to select a ridge parameter,
and Muniz and Kibria [37] made an extensive empirical study by using a number of ridge
estimators including the k̂GM given by

k̂GM = σ̂ 2/

⎧⎨
⎩
( p∏
i=1
β̂2i

)1/p
⎫⎬
⎭ (37)

where σ̂ 2 is calculated as in (21), and p is a number of the parameters.

5. Simulation study

This section reports the outcomes from aMonte Carlo simulation study, and it is designed
to realize themain goal of this paper, comparing the performance of different ridge estima-
tors.We therefore wish to find a good estimate of a ridge parameter and a suitable estimator
obtained by this ridge parameter simultaneously. Since the degree of multi-collinearity
among the covariates is of core importance, we first generated the correlated covariates
using the following equation (see [10]):

xij =
√
(1 − ρ2)tij + ρtij, j = 1, . . . , p (38)

where p is the number of covariates, tij is the standard normal distribution, and ρ =
(0.80, 0.90, 0.99) denotes the three correlation levels between any two covariates. The
observations of the latent response variable are constructed by

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, i = 1, 2, . . . , n (39)

where εi is a random variable from the normal distribution with a mean of zero and con-
stant variance [i.e., εi ∼ N(0, σ 2)], β0 = 1.5, β1 = −2, β2 = 0.7, and β3 = 2.5. Finally,
the response variable in (39) is censored by using (3). Note also that the censoring
rate (C.R.) is determined by a random Bernoulli distribution with probabilities at ratios
specified in Table 1.

In addition, to what has been said above, a number of other factors can affect properties
of ridge type estimators. The aforementioned factors in this simulation are things such
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Table 1. Numerical values of some factors in the simulation
setup.

Effective factors Notation Simulation design

The number of replications R.N 1000
Sample size n 35, 50, 150, 300
Censoring rates C.R 5%, 40%
Correlation levels ρ 0.80, 0.90, 0.99
Variance of the errors σ 2 0.3, 1, 3

Figure 1. Correlation plots for different levels.

as sample size, the distribution of the error terms, correlation level, censoring rates, and
the number of replications for each sample. For completeness, some specifications of the
simulation setup are listed in Table 1.

We also examined three correlation levels, as shown in Table 1. For example, if ρ = 0.80,
this allowed us to have about the same correlation level between all pairs of explanatory
variables, as shown in Figure 1. Moreover, this case showed us that the eigenvalues of
the (X′X) matrix end up being very large, which caused severe multi-collinearity in the
explanatory variables, as displayed in the Figure 2.

5.1. Evaluation of the empirical results

The comparative outcomes of the Monte Carlo simulation experiments are summarized
in the following figures and tables. It should be emphasized that in this simulation, many
configurations were used to provide some intuition on the adequacy of the above ridge
type estimators based on different selection criteria. Because 72 different simulation ver-
sions were examined, it is not possible to illustrate the details of each version. Therefore,
a selection of the simulation results, performed under varying conditions, is given in the
following sections.

Figures 3 and 4 display the box plots constructed by the biases of Tobit ridge regression
estimates β̂MLR frommodel (39). As shown in these figures, when sample size n increases,
the range for the biases of the estimates becomes narrower, as expected. The biases of the
coefficient estimates from medium and large samples (i.e. n = 50 and n = 200) are also
more stable than those from small samples. Figures 3 and 4 also compare the shrinkage
parameter selection criteria on censored data. The biases of the estimates from the criteria
on simulated data sets with censoring levels of 5% are given in Figure 3. Compared to
Figure 4, the general trend shows that as the censoring level increases, the range of the
biases increases. Hence, censoring rates are far more efficient on sample sizes.
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Figure 2. Scatter plot of eigenvalues from the (X′X)matrix.

Figure 3. Boxplots of the biases from 1000 runs under simulation design, ρ = 0.80, σ 2 = 0.3, and C.R.
= 5%. Upper panel: A1, A2, and A3, the boxplots of the replications of the biases of β0 = 1.5 from Tobit
ridge estimates based on theAICc criterion are constructed using the algorithmdefined in Section 2.1 for
sample sizes of n = 35, 50, and 200, respectively. In a similarway, B1, B2, and B3 show the boxplots of the
biases replications based on the BIC, G1, G2, and G3 denote GCV, R1, R2, and R3 define the RECP, C1, C2,
and C3 represent the Cp and K1, K2, and K3 indicate the k̂GM method. From top to bottom, the remaining
panels are the same as the first panel except for β1 = −2, β2 = 0.7, and β3 = 2.5, respectively.
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Figure 4. Similar to Figure 3 but for simulation design, ρ = 0.99, σ 2 = 1, and C.R. = 40%.

Table 2. The outputs from the Tobit ridge estimators based on different criteria of parameters in model
(39) with censored data for ρ = 0.80, σ 2 = 1, and n = 50.

C.R. = 5% C.R. = 40%

Criteria
Summary
Statistics β0 β1 β2 β3 β0 β1 β2 β3

AICc Est 1.68 −1.78 0.79 2.82 1.38 −2.07 0.59 2.79
SD 0.06 0.2 0.24 0.2 0.27 0.77 0.74 0.78
MDE 0.04 0.09 0.07 0.07 0.09 0.59 0.56 0.65

BIC Est 1.87 −1.79 0.82 2.68 1.63 −1.58 1.09 3.3
SD 0.09 0.3 0.36 0.25 0.31 1.07 1.04 1.09
MDE 0.15 0.13 0.14 0.16 0.11 1.32 1.22 1.28

GCV Est 1.78 −1.78 0.79 2.78 1.47 −2.02 0.64 2.84
SD 0.05 0.17 0.2 0.16 0.26 0.67 0.65 0.67
MDE 0.08 0.08 0.05 0.07 0.07 0.44 0.42 0.48

RECP Est 1.69 −2.03 0.73 2.94 1.51 −1.89 0.72 2.78
SD 0.04 0.13 0.16 0.14 0.25 0.59 0.57 0.7
MDE 0.04 0.02 0.03 0.02 0.06 0.36 0.33 0.53

Cp Est 1.68 −1.78 0.79 2.82 1.38 −2.07 0.59 2.79
SD 0.06 0.2 0.24 0.2 0.27 0.77 0.74 0.78
MDE 0.04 0.09 0.07 0.07 0.09 0.59 0.56 0.65

k̂GM Est 1.87 −1.79 0.82 2.68 1.63 −1.58 1.09 3.3
SD 0.09 0.3 0.36 0.25 0.31 1.07 1.04 1.09
MDE 0.15 0.13 0.14 0.16 0.11 1.32 1.22 1.28

Note: Bold values denote the best scores.

The fits of the Tobit regression model (39) via MLR based on different selection criteria
are summarized in Tables 1 and 2. These tables give the estimates of the parameters from
the Tobit model, their averaged standard errors (SDs), and MDE values defined in (23) for
each criterion. It should be noted that the rows labelled ‘Est’ give the estimate vector β̂MLR
defined in (14). The next rows marked ‘SD’ denote the standard errors calculated based
on σ̂ 2 in (21) and the root squares of diagonal elements of the matrix Var(β̂MLR) given
at (20). The rows marked ‘MDE’ indicate the risk estimates related to the estimators. In
these tables, Tobit ridge estimators are computed by optimum shrinkage parameter, which
is selected with criteria considered here.
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Table 3. Similar to Table 1 but for ρ = 0.99, σ 2 = 3, and n = 300.

C.R. = 5% C.R. = 40%

Criteria
Summary
Statistics β0 β1 β2 β3 β0 β1 β2 β3

AICc Est 1.55 −2.3 1.28 3.35 1.68 −1.75 0.63 2.6
SD 0.23 0.89 0.79 0.92 0.61 0.97 0.95 0.98
MDE 0.06 0.87 0.95 0.96 0.4 1 0.91 1.12

BIC Est 2.05 −2.15 0.99 3.42 1.28 −1.72 1.02 3.11
SD 0.34 1.5 1.25 1.05 0.92 1.63 1.58 1.64
MDE 0.42 2.26 1.65 1.29 0.89 2.74 2.6 2.7

GCV Est 1.6 −2.24 1.14 3.16 1.43 −1.89 0.68 2.85
SD 0.19 0.64 0.77 0.86 0.51 0.77 0.76 0.78
MDE 0.05 0.46 0.79 0.77 0.27 0.61 0.58 0.63

RECP Est 1.65 −2.12 1.13 3.08 1.43 −1.82 0.78 2.72
SD 0.16 0.57 0.67 0.76 0.43 0.63 0.73 0.57
MDE 0.05 0.33 0.63 0.58 0.19 0.43 0.54 0.4

Cp Est 1.68 −2.28 1.01 3.18 1.41 −1.86 0.66 2.83
SD 0.17 0.91 0.89 0.88 0.47 0.69 0.68 0.7
MDE 0.06 0.91 0.89 0.81 0.23 0.5 0.46 0.52

k̂GM Est 2 −2.38 1.05 3.36 1.63 −2.04 0.63 3.13
SD 0.32 1.34 1.2 1.39 0.86 1.36 1.33 1.28
MDE 0.35 1.94 1.56 2.05 0.76 1.85 1.77 1.66

Note: Bold values denote the best scores.

Notes in Tables 2 and 3 show that average SD andMDE values for k̂GM andBIC selection
methods are larger than those of the other selection criteria for almost all of the parame-
ter estimates when the censoring level is sufficiently low. The RECP criterion has chosen a
better estimate than the other four criteria and is a benchmarkmethod for almost all exper-
iments. In addition, the estimates obtained byCp andGCV seemmore reasonable. If results
that obtained under heavy censorship are inspected, RECP still has the best performance,
but the BICmethod does not give satisfying results.

The scores in these Tables also prove thatBIC and k̂GM are highly sensitive to censorship.
Therefore, it is not a suitable criterion for ridge parameter selection in a Tobit ridge regres-
sion. The following outcomes also support that argument. However, GCV , RECP, and Cp
are relatively more resistant to censorship than the other criteria. Cp in particular gives
better scores at a high censoring level. In terms of correlation levels, k̂GM had the worst
performance, and BIC was again second worst. Furthermore, one may note that for lower
correlation levels, although AICc and BIC produce similar results, AICc always chooses a
better ridge parameter than BIC. Consequently, inferences and comments based on BIC
are also often valid for the AICc criterion.

To gain some further insight into the above ideas, the estimated SMDE values from esti-
mators are also tabulated in Table 4 for only the highest value of variance σ 2 = 3. The other
outcomes from different simulation configurations are similar, and they are not reported
here. The SMDE values clearly provide evidence in support of the claims in the Table 3.
Note also that when the variance of errors (i.e., σ 2) increased, the SMDE values increased,
as expected. In general, the Tobit ridge estimator based on the RECP criterion outperforms
the others in terms of providing smaller SMDE values.

When dealing with the shrinkage parameter selection problem, a key problem is hav-
ing a good perspective into bias and variance of the estimators since a balance between
these two measurements forms the core of many parameter selection criteria. Therefore,



16 D. AYDIN ET AL.

Table 4. Average SMDE values from the estimators based on different criteria for σ 2 = 3.

C.R = 5% C.R = 40%

ρ n AICc BIC GCV RECP Cp k̂GM AICc BIC GCV RECP Cp k̂GM

0.8 35 0.79 0.86 0.76 0.673 0.76 0.98 0.96 1.27 0.87 0.834 0.86 1.28
50 0.7 0.74 0.68 0.588 0.7 0.88 0.82 0.99 0.76 0.636 0.74 1.06
150 0.52 0.53 0.52 0.489 0.53 0.61 0.63 0.66 0.61 0.507 0.68 0.85
300 0.53 0.53 0.53 0.507 0.53 0.59 0.557 0.56 0.55 0.502 0.61 0.74

0.9 35 1.06 1.3 0.99 0.816 0.92 1.12 1.033 1.47 0.91 1.228 0.83 1.33
50 0.75 0.86 0.72 0.663 0.69 0.96 0.873 0.99 0.81 0.881 0.9 1.42
150 0.57 0.58 0.56 0.493 0.57 0.75 0.728 0.84 0.69 0.621 0.76 1.26
300 0.46 0.47 0.46 0.42 0.46 0.45 0.633 0.66 0.62 0.59 0.66 0.95

0.99 35 1.44 1.98 1.3 1.065 1.22 1.62 1.675 2.13 1.4 1.094 1.38 1.87
50 1.43 1.95 1.29 1.081 1.22 1.6 1.575 2.02 1.33 1.628 1.26 1.7
150 1.13 1.43 1.04 1.204 1 1.37 1.246 1.77 1.1 1.019 1.1 1.61
300 1.01 1.2 0.95 1.035 0.91 1.21 1.062 1.36 1.08 1.109 1.06 1.42

Note: Bold values denote the best scores.

Figure 5. Bias-Variance decomposition plot for ρ = 0.90, C.R. = 5%, σ 2 = 3.

Figures 5 and 6 represent bias-variance decomposition for six criteria in terms of SMDEs.
Both figures were obtained for different designs. The figures clearly show that the Tobit
ridge estimator is a biased estimator, which is most evident in Figure 5. The estimates in
Figure 6 havemore variance due to the high censoring levels.When the y-axis of the figures
is inspected, it appears that the estimators obtained using information criteria have smaller
SMDE, bias, and variance values than the k̂GM benchmark. These figures also prove that
RECP provides satisfying performance for this simulation study.

5.2. Comparing the efficiency

In order to illustrate and compare the efficiency of the selection methods based on cor-
related data, relative efficiency values are constructed from the SMDE values. Different
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Figure 6. Similar to Figure 5 but for ρ = 0.99, C.R. = 40%, σ 2 = 1.

Figure 7. Bar-plots for relative efficiencies.

combinations are shown in Figure 7. As shown in Figure 7, relative efficiencies of RECP are
better than others for all combinations, which can be crosschecked with Table 2. This case
shows that RECP is more efficient than the other criteria, especially for highly correlated
data.

When the bottom-right panel of Figure 7 is inspected, it reveals that the RECP criterion
had the best efficiency rates for highly correlated data (ρ = 0.99) and a large variance of the
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error terms (i.e., σ 2 = 3). This implies that the RECP criterion provides an optimal Tobit
ridge estimator for fitting penalized ML criterion and the standard Tobit regression model
discussed here. Moreover, RECP seems to work well in all simulation configurations. The
bar plots displayed in Figure 7 indicate thatAICc,GCV , andCp had approximately the same
performance due to the effect of replications. Note that their performances were better than
those of the BIC and k̂GM methods. Lastly, the k̂GM method performed quite poorly in this
study.

6. Real data example

In this section, a real data set was used to compare the performances of the Tobit ridge type
estimators based on information criteria, which were used for selecting the ridge parame-
ter. Gross domestic product per capita data obtained fromTurkeywas used and is accessible
at https://data.worldbank.org. This data set contains eight variables, and each variable con-
sists of 58 observations. The five most important variables affecting the GDP per capita
(gdppc) are the percentage of import and exported goods (impexp), the population growth
rate (poprate), the percentage of industrial production (indstry), the percentage of agricul-
tural production (agrclt), and military spending (miltry). Hence, we used the regression
model

gdppci = β1(impexpi1)+ β2(popratei2)+ β3(indstryi3)+ β4(agrclti4)

+ β5(miltryi5)+ εi, i = 1, . . . , 58 (40)

to determine GDP per capita data.
Collinearity was checked by simply calculating the correlations of the covariates stated

in (40). Let X be a (58 × 5) matrix of the levels of the predictors in our real data exam-
ple. The density of gdppc and the correlation plot of explanatory variables are displayed in
Figure 8, which allows us to examine the relationship among the explanatory variables at
the first stage.

The left panel of Figure 8 shows the density of variable gdppc. Note that density is impor-
tant for this dataset because it allows us to visualize the censored observations. As seen from

Figure 8. Descriptive plots for GDP per capita data modelled by Tobit-ridge regression.

https://data.worldbank.org
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the gdppc-axis, the dataset considered here is the left-censored, and these censored obser-
vations are indicated with zero. Note that gdppc values are not zero, because of they are
incompletely observed, they take zero value which is a part of the Tobit methodology (see
[2]). The right panel in this figure shows the correlations among the explanatory variables.
Since some covariates are highly correlated, there is potential multi-collinearity in this real
data set. Consequently, it is not possible to analyse this dataset with a classical regression
model or a classical Tobit model.

A very simple measure of multi-collinearity can be provided by inspecting the char-
acteristic roots or eigenvalues (say λ1, . . . λk) of (X′X). One or more small eigenvalues
mean that there is collinearity among the columns of matrix X. The measure most com-
monly used to detect multi-collinearity is the condition index (CI), which is computed as
the ratio of minimum and maximum eigenvalues of (X′X), as given in (41). The eigen-
values of the (X′X) are λ1 = 106787, λ2 = 21775.61, λ3 = 1048.66, λ4 = 20.43, and λ5 =
1.88, respectively. Hence, for the GDP per capita data set, the CI is defined as CI =√
[λmax(X′X)/λmin(X′X)] = 238.33 (41).
Since the value of CI exceeds 30, we must conclude that there is a strong collinear-

ity problem in this data set [38]. To overcome the collinearity and the left- cen-
sored data simultaneously, a Tobit ridge estimator was used, which has been expressed
in the previous section. To realize our purpose, the ridge parameter was chosen by
AICc,GCV ,BIC,Cp,RECP, and k̂GM methods, respectively. The outcomes from the real
data are summarized in the following table and figure.

Table 5 presents the Tobit ridge regression results using GDP per capita dataset for each
criterion. In this table, the rows marked ‘Est’ denote the estimated values of the regression
coefficients. The next rows labelled ‘SD’ indicate the standard deviations of the estimated
coefficients. Note that the columnmarked ‘SMDE’ provides the values of SMDE as defined
in (22), whereas the column labelled ‘Var(ε)’ shows the estimated variances of the error
terms stated in (40). Important scores are indicated in bold. If one examines Table 5 care-
fully, one sees that RECP has smaller standard deviations and SMDE scores compared to
other criteria. In addition, AICc, Cp, and GCV have provided the next-best results after
RECP. Although the BICmethod yields some small bias values, it has relatively large stan-
dard deviations for the regression coefficients and the largest SMDE value in comparison

Table 5. Outcomes from the Tobit ridge estimators based on different criteria.

Criteria
Summary
Statistics β1 β2 β3 β4 β5 SMDE Var(ε)

AICc Est 0.236 10.959 0.306 −0.489 −4.868 5.703 2.876
SD 0.089 3.263 0.033 0.302 0.842

BIC Est 0.224 6.175 0.377 −1.581 −3.691 9.058 3.84
SD 0.057 4.257 0.245 0.149 0.071

GCV Est 0.236 10.937 0.307 −0.289 −4.867 4.155 2.377
SD 0.053 2.059 0.023 0.197 0.642

RECP Est 0.255 8.789 0.942 −0.537 −4.69 3.94 2.061
SD 0.006 1.202 0.021 0.014 0.034

Cp Est 0.25 7.55 0.451 −0.478 −4.692 5.426 3.261
SD 0.007 1.205 0.028 0.015 0.04

k̂GM Est 0.207 13.205 0.254 −0.634 −4.718 6.425 3.893
SD 0.107 3.7 0.229 0.41 1.316

Note: Bold values denote the best scores.
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Figure 9. Bar plot for the relative efficiencies obtained from ridge estimators based on criteria.

with the others. As for k̂GM , it performs similarly to BIC. From these real data results, we
can say that the results of the simulations and the real data study are in accordance with
one another.

Figure 9 represents the relative efficiency values from the criteria for the GDP per capita
dataset. It clearly shows that RECP is the most efficient method in selecting the ridge
parameter. Interpretations given for Table 5 are likewise acceptable for Figure 9.Note finally
that AICc, Cp, and GCV follow RECP in terms of efficiency, and BIC and k̂GM do not
perform well, as in the simulation experiments.

7. Conclusions and recommendations

In this paper, we introduced the Tobit ridge estimators to estimate the parameters of a Tobit
model with collinear data. To efficiently calculate these estimators we needed an optimum
shrinkage parameter. The optimum parameter was determined using information crite-
ria, such as AICc,BIC,GCV ,RECP, and Cp. The outcomes obtained from these criteria
were compared to those found with k̂GM , which has been used as a benchmark method
in this paper. Thus, six different Tobit ridge estimators based on ML (i.e. β̂MLR defined in
(14)) were provided for the parameters of a Tobit regression model with left-censored and
collinear data.

To compare the performance of the estimators, the values of SMDE, biases, and vari-
ances of regression coefficients, variances of the models and relative efficiencies were used
as evaluation measurements. Outcomes from the simulation and with real data show that
RECP performed better than the others, whereas BIC did not perform well. It should be
noted that k̂GM was used by Khalaf et al. [12] to select the shrinkage parameter for the Tobit
ridge estimator, and it had given satisfying results in their study. However, in our study, the
performance of k̂GM , similar to that of BIC, did not perform well.
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The following conclusions are expressed to summarize the outcomes from the Monte
Carlo simulation experiments and real data study:

• TheMonte Carlo simulation results, performed under varying conditions, show that the
quality of the parameter estimates is poorly affected by the correlation and censoring
levels. Concerning this, k̂GM and BIC have performed poorly in terms of providing a
ridge estimator for the Tobit model with left-censored data, whereas RECP, Cp, and
GCV have performed relatively better.

• From the boxplots given in Figures 3 and 4, it is shown that the quantities of the biases
obtained from the estimators under the smaller samples are much larger than those
obtained from the larger samples. This result implies that the censorship and correlation
levels in the data are highly effected by the sample size. In this sense,RECP also provides
the low-biased estimates.

• Although RECP generally had the best SD andMDE scores (see Tables 2 and 3), when
simulation results are inspected in detail, we see that in some of the high censoring levels
Cp and GCV have the same scores. Furthermore, the scores in Tables 2–4 denote that
k̂GM and BIC performed the worst, especially at high censoring levels.

• As shown in Figures 5 and 6, which show the bias-variance decomposition, it is more
appropriate to use the Tobit ridge estimators based on shrinkage parameters selected by
information criteria (i.e. AICc, GCV, Cp, RECP, and BIC) than classical methods, such
as the k̂GM method.

• According to the results from the GDP data, all methods perform satisfactorily. There is
in fact little difference between them. Unsurprisingly, RECP had the minimum SMDE
value in this real data example, as well as the simulations since it produces the estimators
with minimum variances.

• In this study, as can be seen in explanations given above, although k̂GM is a commonly
used and successful estimator for the ridge parameter, it has an unsatisfying perfor-
mance in terms of Tobit ridge estimator. If simulation study is inspected, it can be
realized that performance of k̂GM is getting worse for high censoring level which is the
major cause of the unsatisfying results.

As a result of this study, we conclude that the RECP criterion is most appropriate in esti-
mating the parameters of a Tobit regression model because the estimator with the ridge
parameter selected by RECP has produced the estimates with the best numerical perfor-
mance for all simulation configurations and the real dataset. Additionally, the AICc, GCV,
and Cp criteria are also efficient for several simulation configurations. By contrast, k̂GM
and BIC perform the worst. Ultimately, RECP can be recommended as the best selection
criterion.
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Appendices

Appendix 1. Derivation of Equation (14)

Matrix and vector formof the Equation (13) can be obtained similar to Fair [21] but for ridge solution
as follows to provide simplicity of the solution:

−XT
0 η0 + 1

σ
XT
1 (Y1 − X1β)− kβ = 0 (A1)

From that, derivation of the estimator of β is given by
1
σ
XT
1Y1 − XT

1X1β − kβ − XT
0 η0 = 0

XT
1X1β + kβ = 1

σ
XT
1Y1 − XT

0 η0

(XT
1X1 + kI)β = 1

σ
XT
1Y1 − XT

0 η0

β = 1
σ
(XT

1X1 + kI)−1XT
1Y1 − (XT

1X1 + kI)−1XT
0 η0

Thus, β solution in Equation (14) can be obtained for Tobit ridge model.

Appendix 2. Details of Equations (19–20)

Derivation of Equation (19) is obtained as follows

E(β̂MLR) = E[(X′
1X1 + kI)−1[X′

1Y1 − σX0η0]]

= E[(X′
1X1 + kI)−1[X′

1X1β − σX0η0]]

= E[(X′
1X1 + kI)−1X′

1X1β − (X′
1X1 + kI)−1

σX0η0]

= (X′
1X1 + kI)−1(X′

1X1 + kI − kI)β − (X′
1X1 + kI)−1σX0η0

= (X′
1X1 + kI)−1[(X′

1X1 + kI)β − kIβ] − (X′
1X1 + kI)−1σX0η0

= [I − k(X′
1X1 + kI)−1]β − (X′

1X1 + kI)−1σX0η0

= β − k(X′
1X1 + kI)−1β − (X′

1X1 + kI)−1σX0η0
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If Ak = (X1
′X1 + kI)−1 then

E(β̂MLR) = β − kAkβ − AkσX0η0

and from that bias of the β could be written as

BIAS(β̂MLR) = kAkβ + AkσX0η0

For Equation (20) it should be written first,

E
(
∂2logLpen

∂β∂β ′

)
= −

∑
0

φ(vi)
(1 −�(vi))

[
φ(vi)− 1

σ 2 (1 −�(vi)xTi β

]
xixTi − 1

σ 2

∑
1

xixTi − k

In order to make this expression simple, using with the probability limits of this second deriva-
tive, scoring method is applied. Thus, second derivative of the penalized log likelihood function
according to β can be written more easily

E
(

−∂
2logLpen

∂β∂β ′

)
= (X′

1RX1 + kIp)−1

Thus it can be said that Equation (20) is ensured (see [11,21] for details).
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