• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Meslek Yüksekokulları
  • Muğla Meslek Yüksekokulu
  • Kimya ve Kimyasal İşleme Teknolojileri Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Meslek Yüksekokulları
  • Muğla Meslek Yüksekokulu
  • Kimya ve Kimyasal İşleme Teknolojileri Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antibiofilm and Anti-Quorum Sensing Potential of Safely-Synthesized Hydrated Zirconium Oxide-Coated Alginate Beads against Some Pathogenic Bacteria

Thumbnail

View/Open

Tam metin / Article (2.579Mb)

Date

2023

Author

Tamfu, Alfred Ngenge
İspirli Doğaç, Yasemin
Ceylan, özgür
Dediu, Andreea Botezatu
Dinica, Rodica Mihaela

Metadata

Show full item record

Citation

Tamfu, Alfred Ngenge, Yasemin Ispirli Dogaç, Ozgur Ceylan, Andreea Botezatu Dediu, Selahattin Bozkurt, and Rodica Mihaela Dinica. “Antibiofilm and Anti-quorum Sensing Potential of Safely-synthesized Hydrated Zirconium Oxide-coated Alginate Beads Against Some Pathogenic Bacteria”. Journal of Chemistry 2023 (2023): 1–14. https://doi.org/10.1155/2023/9924845.

Abstract

Water is essential to life, but access to uncontaminated water remains a global challenge. Metal oxides possess particular characteristics required for removing heavy metals, inorganic and organic pollutants from wastewater as well as inhibiting microorganisms. Zirconium oxide and alginate which are nontoxic materials were used to synthesize hydrated zirconium oxide-alginate coated materials, ZAB-1 (1.5% alginate) and ZAB-2 (2.0% alginate). FT-IR was used to characterize the functional groups while surface morphology was characterized using SEM. XRD was used to characterize the material structure of the resulting composite. Against Chromobacterium violaceum CV12472, minimal inhibitory concentrations (MICs) were 0.625 mg/mL for ZAB-1 and ZAB-2 while against C. violaceum CV026, the MIC values were 0.625 mg/mL and 1.25 mg/mL for ZAB-1 and ZAB-2, respectively. At MIC and sub-MIC concentrations, the synthesized beads inhibited the production of violacein in C. violaceum CV12472 and C. violaceum CV026, indicating that they can reduce QS-mediated virulence factors in bacteria. Antimicrobial activity was evaluated against Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Candida albicans, and Candida tropicalis, and MIC values ranged from 1.25 mg/mL to 10 mg/mL. Biofilm inhibition percentages were relatively high against S. aureus, E. coli, and C. albicans. It is observed that the increase in the alginate amount from 1.5% to 2.0% improves the antimicrobial, anti-QS, and antibiofilm effects. The alginate makes the zirconium oxide particles biocompatible and easily recoverable from water after treatment. ZAB-1 and ZAB-2 materials can therefore be sustainable materials for water treatment since it can inhibit pathogenic bacteria in water and equally satisfy environmental friendliness. The synthesized particles reduced the chances for antimicrobial resistance since they disrupted QS in bacteria and eliminated biofilms, thereby preventing biofouling of microbial communities in water. Future prospects of this study involve biofiltration, that is, the use of the synthesized composite in the development of a safe and compatible biofilter for water purification.

Source

Journal of Chemistry

Volume

2023

URI

https://doi.org/10.1155/2023/9924845
https://hdl.handle.net/20.500.12809/11064

Collections

  • Kimya ve Kimyasal İşleme Teknolojileri Bölümü Koleksiyonu [65]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.