• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Large-scale global optimization based on hybrid swarm intelligence algorithm

Date

2020

Author

Mashwani, Wali Khan
Hamdi, Abdelouahed
Asif Jan, Muhammad
Göktaş, Atila
Khan, Fouzia

Metadata

Show full item record

Abstract

There are numerous large-scale global optimization problems encountered in real-world applications including engineering, manufacturing, economics, networking fields. Over the last two decades different varieties of swarm intelligence and nature inspired based evolutionary algorithms (EAs) were developed and still. Among them, particles swarm optimization, Firefly algorithm, Ant colony optimization, Bat algorithm are the most popular and recently developed leading swarm intelligence based approaches. They are mainly inspired by the social and cooperative behaviors of swarm likewise herds of animals, flocking of birds, schooling of fish, ant colonies, herds of bisons and packs of wolves working together for their common benefit. Due to easy implementation and high capability in achieving of absolute optimum, swarm intelligence based algorithms have attained a great deal attention in both academic and industrial applications. This paper proposes a hybrid swarm intelligence (HSI) algorithm that employs the Bat Algorithm (BA) and the Practical Swarm Optimization (PSO) as constituents to perform their search process for dealing with recently designed benchmark functions in the special session of the 2017 IEEE congress of evolutionary computation (CEC'17) [3]. The approximate solutions for most of the CEC'17 benchmark functions obtained by the suggested algorithm in its twenty five independent runs of trails are much promising as compared to its competitors. © 2020-IOS Press and the authors. All rights reserved.

Source

Journal of Intelligent and Fuzzy Systems

Volume

39

Issue

1

URI

https://doi.org/10.3233/JIFS-192162
https://hdl.handle.net/20.500.12809/6273

Collections

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.