Basit öğe kaydını göster

dc.contributor.authorÖnay Koçoğlu, Fatma
dc.contributor.authorEsnaf, Şakir
dc.date.accessioned2022-08-25T11:18:35Z
dc.date.available2022-08-25T11:18:35Z
dc.date.issued2022en_US
dc.identifier.citationKoçoğlu, Fatma Önay, and Şakir Esnaf. "Machine Learning Approach and Model Performance Evaluation for Tele-Marketing Success Classification," International Journal of Business Analytics (IJBAN) 9, no.5: 1-18. http://doi.org/10.4018/IJBAN.298014en_US
dc.identifier.issn2334-4547 / 2334-4555
dc.identifier.urihttp://doi.org/10.4018/IJBAN.298014
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10237
dc.description.abstractUp to the present, various methods such as data mining, machine learning, and artificial intelligence have been used to get the best assessment from huge and important data resources. Deep learning, one of these methods, is an extended version of artificial neural networks. Within the scope of this study, a model has been developed to classify the success of tele-marketing with different machine learning algorithms, especially with deep learning algorithms. Naive Bayes, C5.0, Extreme Learning Machine, and Deep Learning algorithms have been used for modelling. To examine the effect of class label distribution on model success, synthetic minority oversampling technique has been used. The results have revealed the success of deep learning and decision trees algorithms. When the data set was not balanced, the deep learning algorithm performed better in terms of sensitivity. Among all models, the best performance in terms of accuracy, precision, and F-score have been achieved with the C5.0 algorithm.en_US
dc.item-language.isoengen_US
dc.publisherIGI GLOBALen_US
dc.relation.isversionof10.4018/IJBAN.298014en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClass Label Distributionen_US
dc.subjectClassificationen_US
dc.subjectDecision Treesen_US
dc.subjectDeep Learningen_US
dc.titleMachine Learning Approach and Model Performance Evaluation for Tele-Marketing Success Classificationen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-1096-9865en_US
dc.contributor.institutionauthorÖnay Koçoğlu, Fatma
dc.identifier.volume9en_US
dc.identifier.issue5en_US
dc.relation.journalINTERNATIONAL JOURNAL OF BUSINESS ANALYTICSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster