• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of sensor location and link flow reconstruction using turn ratio and flow sensors in an arterial network

Thumbnail

View/Open

Tam metin / Article (2.290Mb)

Date

2022

Author

Yıldız Taşcıkaraoğlu, Fatma
Aksoy, Göker

Metadata

Show full item record

Citation

Fatma Yildiz Tascikaraoglu & Goker Aksoy (2022): Identification of sensor location and link flow reconstruction using turn ratio and flow sensors in an arterial network, Journal of Intelligent Transportation Systems, DOI: 10.1080/15472450.2022.2119385

Abstract

In this article, a quadratic programming problem is considered to identify all link flows in an arterial network when there are unmeasured link flows. A graphical method is provided to determine the minimum number of measurements and sensor locations required to obtain a fully observable model. It is shown that this method is also valid for the augmented graph with turn ratio measurements. If the minimum measurements required are met, a fully determined network can be obtained. If there is not enough measurement, a bound on the magnitude of the resulting inaccuracy in terms of vehicle kilometers traveled (VKT) can be calculated by the proposed linear programming method. The model is that of a queueing network; the parameters describe network geometry, saturation flow rates, turning ratios, timing plan and link flows. Three case studies are conducted to validate this approach. The first two cases are to calculate all missing flows by using a few numbers of measurements and minimum number of measurements required, respectively. Upper and lower bounds in terms of VKT are also calculated for these cases. Third case is to obtain a fully determined network with the minimum number of flow measurements when turn ratio sensors are included. Real measurements are collected from a network in Mugla including 55 links and 16 intersections. Vissim simulator is used to analyze the accuracy of the link flow calculations obtained from the proposed method. The results show that the proposed programming method can calculate the missing flows with a high accuracy and short computation time.

Source

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS

URI

https://doi.org/10.1080/15472450.2022.2119385
https://hdl.handle.net/20.500.12809/10281

Collections

  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.