• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • İnşaat Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • İnşaat Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of Replacing Cement with Waste Glass on Mechanical Properties of Concrete

Thumbnail

View/Open

Tam metin / Article (3.085Mb)

Date

2022

Author

Zeybek, Özer
Özkılıç, Yasin Onuralp
Karalar, Memduh
Çelik, Ali İhsan
Qaidi, Shaker
Ahmad, Jawad
Burduhos-Nergis, Dumitru Doru

Metadata

Show full item record

Citation

Zeybek, Ö.; Özkılıç, Y.O.; Karalar, M.; Çelik, A. ̇I.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Influence of Replacing Cement with Waste Glass on Mechanical Properties of Concrete. Materials 2022, 15, 7513. https://doi.org/10.3390/ma15217513

Abstract

In this study, the effect of waste glass on the mechanical properties of concrete was examined by conducting a series of compressive strength, splitting tensile strength and flexural strength tests. According to this aim, waste glass powder (WGP) was first used as a partial replacement for cement and six different ratios of WGP were utilized in concrete production: 0%, 10%, 20%, 30%, 40%, and 50%. To examine the combined effect of different ratios of WGP on concrete performance, mixed samples (10%, 20%, 30%) were then prepared by replacing cement, and fine and coarse aggregates with both WGP and crashed glass particles. Workability and slump values of concrete produced with different amounts of waste glass were determined on the fresh state of concrete, and these properties were compared with those of plain concrete. For the hardened concrete, 150 mm × 150 mm × 150 mm cubic specimens and cylindrical specimens with a diameter of 100 mm and a height of 200 mm were tested to identify the compressive strength and splitting tensile strength of the concrete produced with waste glass. Next, a three-point bending test was carried out on samples with dimensions of 100 × 100 × 400 mm, and a span length of 300 mm to obtain the flexure behavior of different mixtures. According to the results obtained, a 20% substitution of WGP as cement can be considered the optimum dose. On the other hand, for concrete produced with combined WGP and crashed glass particles, mechanical properties increased up to a certain limit and then decreased owing to poor workability. Thus, 10% can be considered the optimum replacement level, as combined waste glass shows considerably higher strength and better workability properties. Furthermore, scanning electron microscope (SEM) analysis was performed to investigate the microstructure of the composition. Good adhesion was observed between the waste glass and cementitious concrete. Lastly, practical empirical equations have been developed to determine the compressive strength, splitting tensile strength, and flexure strength of concrete with different amounts of waste glass. Instead of conducting an experiment, these strength values of the concrete produced with glass powder can be easily estimated at the design stage with the help of proposed expressions.

Source

Materials

Volume

15

Issue

21

URI

https://doi.org/10.3390/ma15217513
https://hdl.handle.net/20.500.12809/10413

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [68]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.