• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measuring The Robustness of AI Models Against Adversarial Attacks: Thyroid Ultrasound Images Case Study

Thumbnail

View/Open

Tam metin / Article (919.9Kb)

Date

2022

Author

Ceyhan, Mustafa
Karaarslan, Enis

Metadata

Show full item record

Citation

Ceyhan, M., Karaarslan, E. (2022). Measuring The Robustness of AI Models Against Adversarial Attacks: Thyroid Ultrasound Images Case Study. Journal of Emerging Computer Technologies, 2(2), 42-47.

Abstract

The healthcare industry is looking for ways on using artificial intelligence effectively. Decision support systems use AI (Artificial Intelligence) models that diagnose cancer from radiology images. These models in such implementations are not perfect, and the attackers can use techniques to make the models give wrong predictions. It is necessary to measure the robustness of these models after an adversarial attack. The studies in the literature focus on models trained with images obtained from different regions (lung x-ray and skin dermoscopy images) and shooting techniques. This study focuses on thyroid ultrasound images as a use case. We trained these images with VGG19, Xception, ResNet50V2, and EfficientNetB2 CNN models. The aim is to make these models make false predictions. We used FGSM, BIM, and PGD techniques to generate adversarial images. The attack resulted in misprediction with 99%. Future work will focus on making these models more robust with adversarial training.

Source

Journal of Emerging Computer Technologies

Volume

2

Issue

2

URI

https://dergipark.org.tr/en/pub/ject/issue/72547/1194541
https://hdl.handle.net/20.500.12809/10443

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [103]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.