• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fire behavior prediction with artificial intelligence in thinned black pine (Pinus nigra Arnold) stand

Thumbnail

View/Open

Tam metin / Article (2.688Mb)

Date

2023

Author

Sevinç, Volkan
Küçük, Ömer

Metadata

Show full item record

Citation

Kucuk, O., & Sevinc, V. (2023). Fire behavior prediction with artificial intelligence in thinned black pine (Pinus nigra Arnold) stand. Forest Ecology and Management, 529, 120707.

Abstract

Modeling forest fire behavior is very important for the effective control of forest fires and the setting up of necessary precautions before fires start. However, studies of forest fire behavior are complex studies that depend on many variables and usually involve large data sets. For this reason, the predictive power and speed of classical forecasting models are lower than of artificial intelligence models in cases involving big data and many variables. Moreover, classical forecasting models must satisfy certain statistical assumptions, unlike artificial intelligence methods. Thus, in this study, predictions were made of surface fire behavior, especially the rate of fire spread and the fire intensity, at the location at which fires started using two artificial intelligence methods, an artificial neural network and a decision tree. The accuracy of the developed models was fitted and tested. Finally, the classical regression model for predicting surface fire behavior was compared with the two artificial intelligence methods. The accuracy measures of the artificial intelligence models were found to be better than those of the classical model.

Source

Forest Ecology and Management

Volume

529

URI

https://doi.org/10.1016/j.foreco.2022.120707
https://hdl.handle.net/20.500.12809/10513

Collections

  • İstatistik Bölümü Koleksiyonu [95]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.