• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A correlation coefficient-based feature selection approach for virus-host protein-protein interaction prediction

Thumbnail

Göster/Aç

Tam metin / Article (1.168Mb)

Tarih

2023

Yazar

İbrahim, Ahmed Hassan
Karabulut, Onur Can
Karpuzcu, Betül Asiye
Türk, Erdem
Süzek, Barış Ethem

Üst veri

Tüm öğe kaydını göster

Künye

Ibrahim AH, Karabulut OC, Karpuzcu BA, Türk E, Süzek BE. A correlation coefficient-based feature selection approach for virus-host protein-protein interaction prediction. PLoS One. 2023 May 2;18(5):e0285168. doi: 10.1371/journal.pone.0285168. PMID: 37130110; PMCID: PMC10153705.

Özet

Prediction of virus-host protein-protein interactions (PPI) is a broad research area where various machine-learning-based classifiers are developed. Transforming biological data into machine-usable features is a preliminary step in constructing these virus-host PPI prediction tools. In this study, we have adopted a virus-host PPI dataset and a reduced amino acids alphabet to create tripeptide features and introduced a correlation coefficient-based feature selection. We applied feature selection across several correlation coefficient metrics and statistically tested their relevance in a structural context. We compared the performance of feature-selection models against that of the baseline virus-host PPI prediction models created using different classification algorithms without the feature selection. We also tested the performance of these baseline models against the previously available tools to ensure their predictive power is acceptable. Here, the Pearson coefficient provides the best performance with respect to the baseline model as measured by AUPR; a drop of 0.003 in AUPR while achieving a 73.3% (from 686 to 183) reduction in the number of tripeptides features for random forest. The results suggest our correlation coefficient-based feature selection approach, while decreasing the computation time and space complexity, has a limited impact on the prediction performance of virus-host PPI prediction tools.

Kaynak

PLoS One

Cilt

18

Sayı

5

Bağlantı

https://doi.org/10.1371/journal.pone.0285168
https://hdl.handle.net/20.500.12809/10698

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [103]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.