• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time stress detection from smartphone sensor data using genetic algorithm-based feature subset optimization and k-nearest neighbor algorithm

Thumbnail

View/Open

Tam metin / Article (2.027Mb)

Date

2023

Author

Sağbaş, Ensar Arif
Korukoğlu, Serdar
Ballı, Serkan

Metadata

Show full item record

Citation

Sağbaş, E.A., Korukoglu, S. & Ballı, S. Real-time stress detection from smartphone sensor data using genetic algorithm-based feature subset optimization and k-nearest neighbor algorithm. Multimed Tools Appl (2023). https://doi.org/10.1007/s11042-023-15706-1

Abstract

Stress is the mood of pressure and tension that a person feels. Usually, when the pressure on an individual decrease, the body begins to stabilize the state and calm down. Hence, stress detection in real-time is a critical duty in medical systems. However, acquiring physiological data requires additional equipment and is difficult for users to carry with them at all times. Depending on this problem, it is possible to detect stress through behavioral data. Smartphones are devices that provide various behavioral data that people use constantly throughout the day. In this study, a real-time stress detection system based on soft keyboard typing behaviors was developed with the data obtained from linear acceleration, gravity, gyroscope sensors, and a touchscreen panel of the smartphone. 172 attributes were extracted from the raw sensor data. However, such a high number of dimensions could negatively affect the performance of machine learning algorithms. To address this problem, the number of features was reduced by various techniques such as filter-based methods and standard binary-code chromosome Genetic Algorithm as a contribution to this study. Then, writing behaviors were classified with the commonly used machine learning methods namely, C4.5, kNN, and Bayesian Networks. As a result of the experiments, the best classification was obtained from the kNN method using the features selected by the Genetic Algorithm with a classification accuracy of 89.61% and F-Measure of 0.9052. Another contribution of this study is that a mobile service and a relaxation application were developed for stress detection and to reduce stress levels using the selected feature vector.

Source

MULTIMEDIA TOOLS AND APPLICATIONS

URI

https://doi.org/10.1007/s11042-023-15706-1
https://hdl.handle.net/20.500.12809/10720

Collections

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.