• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm

Thumbnail

Göster/Aç

Tam metin / Article (4.391Mb)

Tarih

2023

Yazar

Gökçeoğlu,Candan
Aladağ, Çağdaş Hakan
Bal, Çağatay

Üst veri

Tüm öğe kaydını göster

Künye

Gokceoglu, C., Bal, C. & Aladag, C.H. Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm. Geotech Geol Eng (2023). https://doi.org/10.1007/s10706-023-02516-3

Özet

Prediction of tunnel boring machine (TBM) performance is still a challenging research subject in engineering geology, geotechnical engineering, and tunnel engineering communities. The longest railway tunnel with approximately 10 km, the Bahce-Nurdagi tunnel, was projected as twin tubes and TBM excavation. One of these tubes was successfully completed and the other is under construction. In this study, the geological and geotechnical parameters of the tunnel route and basic TBM parameters were used to predict the TBM performance. For the purpose of the study, a data set including 5334 cases was compiled. The analyses were performed in two phases, the first phase was performed employing only geological and geotechnical parameters while the basic TBM parameters were considered in the second phase analyses. Although the ANN and ANN-fuzzy models yielded acceptable results, the results clearly showed that the random forest algorithm was superior among all other methods for the data used. The results also revealed that the basic TBM parameters should be considered with advanced modeling techniques needed for a successful prediction model for TBM performance.

Kaynak

Geotechnical and Geological Engineering

Bağlantı

https://doi.org/10.1007/s10706-023-02516-3
https://hdl.handle.net/20.500.12809/10806

Koleksiyonlar

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.