• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Metalurji ve Malzeme Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Metalurji ve Malzeme Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced injectability of aqueous β-tricalcium phosphate suspensions through PAA incorporation, gelling and preshearing

Thumbnail

View/Open

Tam metin / Article (7.337Mb)

Date

2023

Author

Şahin, Erdem

Metadata

Show full item record

Citation

ŞAHIN, Erdem. Enhanced injectability of aqueous β-tricalcium phosphate suspensions through PAA incorporation, gelling and preshearing. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 106026.

Abstract

The major shortcoming of aqueous calcium phosphate suspensions used in biomedical applications is their unstable flow during delivery by mechanical means. In this study, microstructural changes and the resulting flow instabilities of aqueous β-TCP suspensions are demonstrated under both pressure-induced and drag-induced flow regimes and then remedied with the incorporation and subsequent gelling and preshearing of Carbopol 940, a biocompatible hydrogel. Mixing and dispersion of calcium phosphate particles into the hydrogel matrix was not efficient under simple agitation conditions. Swelling of the polymer chains was induced at approximately pH = 9.0 by water and particle intrusion within the opened-up coil structure due to deprotonation of the carboxylic acid groups by NaOH. As a result the composite material underwent a rapid viscoplastic transition into a doughy state which was not amenable to further processing without preshearing. Manual kneading converted the material into viscous state and enhanced the flow behavior significantly. Preshearing and probing the microstructure by mechanical spectrometer revealed multiple microstructural mechanisms responsible for the observed stable flow behavior, including improved dispersion of the particles, attrition of the polymeric network into microgel domains, enhanced adhesion and lubrication between the solid and liquid phase, crosslinking of the polymeric network. The net effect of these probable mechanisms was stiffening of the composite matrix, mobilization of solid particles and a marked enhancement in the stability of pressure-induced flow. The resistance of the material to liquid phase migration and its ability to undergo wall-slip and relax under stress were confirmed by simultaneous capillary rheometry and thermogravimetric analyses. The processing method enables improvements in the delivery of this composite material for injection and direct ink writing of scaffolds.

Source

Journal of the Mechanical Behavior of Biomedical Materials

Volume

145

URI

https://doi.org/10.1016/j.jmbbm.2023.106026
https://hdl.handle.net/20.500.12809/10866

Collections

  • Metalurji ve Malzeme Mühendisliği Bölümü Koleksiyonu [79]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.