• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermo-hydraulic efficiency of lung-inspired compact plate heat exchangers made using additive manufacturing techniques with steel, aluminum and titanium powders

Thumbnail

View/Open

Tam metin / Article (18.06Mb)

Date

2024

Author

Güler, Onur Vahip
Gürel, Barış
Aryanfar, Yashar
Castellanos, Humberto Garcia
Göltaş, Merve
Keçebaş, Ali
Akkaya, Volkan Ramazan

Metadata

Show full item record

Citation

GÜLER, Onur Vahip, et al. Thermo-hydraulic efficiency of lung-inspired compact plate heat exchangers made using additive manufacturing techniques with steel, aluminum and titanium powders. Chemical Engineering Science, 2023, 119378.

Abstract

The selection of material for compact plate heat exchangers (CPHEs) is of increasing importance due to global economic and supply constraints. Additionally, the influence of material selection on the thermo-hydraulic characteristics of CPHEs is an area of ongoing research. This study aims to address these issues by analyzing the thermo-hydraulic performance of CPHEs made from steel, aluminum, and titanium materials with small, complex channels. Using an additive manufacturing method (specifically Direct Metal Laser Sintering), lung-inspired CPHEs of identical geometry and roughness were manufactured from steel, aluminum and titanium powders. The thermo-hydraulic characteristics of CPHEs as well as that of a traditional one with Chevron-type, were investigated using both experimental and numerical techniques under specific operating conditions to determine the optimum between maximum heat transfer and minimum pressure drop. The findings of this study reveal that as the temperature difference between the inlet on the hot and cold sides, as well as the flow rate, were increased, there was a corresponding increase in both amount of heat transferred and loss of pressure across all investigated CPHEs. Compared to the chevron type brazed plate heat exchanger, the CPHE made from aluminum showed a 75.2 % and 11.2 % increase in heat transfer and a 31.8 % and 10.9 % reduction in pressure drop at 3 and 6 L/min, respectively, for a temperature difference of 90–40 °C. This study suggests that the use of materials with different thermal conductivities in CPHEs may offer a promising solution to achieve elevated heat transfer rates while minimizing pressure drop.

Source

Chemical Engineering Science

Volume

283

URI

https://doi.org/10.1016/j.ces.2023.119378
https://hdl.handle.net/20.500.12809/11034

Collections

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [104]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.