• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid feature-selection approach for finding the digital evidence of web application attacks

Thumbnail

Göster/Aç

Tam metin / Article (418.4Kb)

Tarih

2019

Yazar

Babiker, Mohammed
Karaarslan, Enis
Hoscan, Yasar
Article has an altmetric score of 1

See more details

Posted by 1 X users
47 readers on Mendeley

Üst veri

Tüm öğe kaydını göster

Özet

The most critical challenge of web attack forensic investigations is the sheer amount of data and level of complexity. Machine learning technology might be an efficient solution for web attack analysis and investigation. Consequently, machine learning applications have been applied in various areas of information security and digital forensics, and have improved over time. Moreover, feature selection is a crucial step in machine learning; in fact, selecting an optimal feature subset could enhance the accuracy and performance of the predictive model. To date, there has not been an adequate approach to select optimal features for the evidence of web attack. In this study, a hybrid approach that selects the relevant web attack features by combining the filter and wrapper methods is proposed. This approach has been validated by experimental measurements on 3 web attack datasets. The results show that our proposed approach can find the evidence with high recall, high accuracy, and low error rates. We believe that the results presented herein may help us to improve accuracy and recall of machine learning techniques; particularly, in the field of web attack investigation. The tools that use this approach may help digital forensic professionals and law enforcement in finding the evidence much more efficiently and faster.

Kaynak

Turkish Journal of Electrical Engineering and Computer Sciences

Cilt

27

Sayı

6

Bağlantı

https://doi.org/10.3906/elk-1812-18
https://app.trdizin.gov.tr//makale/TXpNM05qSTNOdz09
https://hdl.handle.net/20.500.12809/1140

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [3005]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.