• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Determination of Possibilities of Microwave Application for Weed Control

Thumbnail

View/Open

Tam metin / Full text (641.2Kb)

Date

2018

Author

Kaçan, Koray
Çakır, Engin
Aygün, İkbal

Metadata

Show full item record

Abstract

Herbicide use is a continuously growing threat against effective implementation of sustainable agriculture potential. Herbicide use for controlling weeds incurs at the cost of environment and is least cost effective. It also leads to herbicide resistance. This study uncovered possibilities of using microwave energy to control weeds in laboratory conditions. Tests were conducted on a prototype of microwave-based weed control. This study found out the limit of power levels for controlling weeds. For microwave experiments, the most important weeds were selected from among the perennial and annual weeds determined in cotton and maize fields. Microwave radiations were applied on annual weeds; black nightshade (Solanum nigrum L.) and common cocklebur (Xanthium strumarium L.) in addition to perennial weeds; Bermuda grass (Cynodon dactylon (L.) Pers.) and Johnson grass (Sorghum halepense (L.) Pers.). The weeds with three different development stages: (BBCH Scale; 12-13, 19-23, 29-33), four leaves, eight leaves and weeds at seeding stage were exposed to minimum 1.6 kW and maximum 5.6 kW microwave power with two different forward feed rates of 0.1-0.3 m s(-1). Results showed that microwave power required to control the weeds increased with increasing the speed of feed rate. The optimum microwave power to control weeds was at a forward speed of 1 m s-1. The ED50, ED80 and ED90 values were determined according to the dose-response effect analyses for fresh and dry weights of weeds. Consequently, the control of cocklebur and black nightshade required much less power in comparison to Johnson grass and Bermuda grass. Bermuda grass was the only weed which required maximum energy level at all feed rates at laboratory conditions. (C) 2018 Friends Science Publishers

Source

International Journal of Agriculture and Biology

Volume

20

Issue

5

URI

https://hdl.handle.net/20.500.12809/1693

Collections

  • Bitkisel Ve Hayvansal Üretim Bölümü Koleksiyonu [27]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.