• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performances Comparison of Information Criteria for Outlier Detection in Multiple Regression Models Having Multicollinearity Problems using Genetic Algorithms

Date

2013

Author

Alma, Ozlem Gurunlu

Metadata

Show full item record

Abstract

Multiple linear regression models are widely used in applied statistical techniques and they are most useful devices for extracting and understanding the essential features of datasets. However, in multiple linear regression models, problems arise when multicollinearity or a serious outlier observation present in the data. Multicollinearity is a linear dependency between two or more explanatory variables in the regression models which can seriously affect the least squares estimated regression surface. The other important problem is outlier; they can strongly influence the estimated model, especially when using least squares method. Nevertheless, outlier data are often the special points of interests in many practical situations. The purpose of this study is to performance comparison of Akaike Information Criterion (AIC'), Bayesian Information Criterion (BIC') and Information Complexity Criterion (ICOMP'(IFIM)) for detecting outliers using Genetic Algorithms when multiple regression model having multicollinearity problems.

Source

Matematika

Volume

29

Issue

1

URI

https://hdl.handle.net/20.500.12809/3800

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.