Basit öğe kaydını göster

dc.contributor.authorKurtulus, Bedri
dc.contributor.authorFlipo, Nicolas
dc.date.accessioned2020-11-20T16:23:27Z
dc.date.available2020-11-20T16:23:27Z
dc.date.issued2012
dc.identifier.issn0098-3004
dc.identifier.issn1873-7803
dc.identifier.urihttps://doi.org/10.1016/j.cageo.2011.04.019
dc.identifier.urihttps://hdl.handle.net/20.500.12809/4255
dc.descriptionFlipo, Nicolas/0000-0002-8099-2104en_US
dc.descriptionWOS: 000298524100005en_US
dc.description.abstractThe aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km(2) agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The clataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50 x 50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The Arms model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipANRFrench National Research Agency (ANR); FIRE (CNRS/UPMS, Federation Ile de France de Recherche en Environnement) [FR3020]; TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)en_US
dc.description.sponsorshipThis work was funded by the ANR Carnot MINES "Neuro N'Eaudyssee", the PIREN Seine research program, the FIRE FR3020 (CNRS/UPMS, Federation Ile de France de Recherche en Environnement), and TUBITAK. It is also a contribution to the GIS Oracle that maintains the experimental basin of the Orgeval. We kindly thank the BRGM for providing the DEM of the top of the aquifer system. We also kindly thank G. Tallec, C. Fesneau, G. Vilain, J. Tournebize, J. Gamier and G. Billen for their help during the snapshot campaigns. Finally, the support and comments of Patrick Goblet were very useful to clarify the paper.en_US
dc.item-language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSpatial Interpolationen_US
dc.subjectANFISen_US
dc.subjectSensitivity Analysisen_US
dc.subjectHydraulic Headen_US
dc.subjectHydrogeologyen_US
dc.titleHydraulic head interpolation using ANFIS-model selection and sensitivity analysisen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTemp[Kurtulus, Bedri; Flipo, Nicolas] MINES Paris Tech, Dept Geosci, F-77305 Fontainebleau, France -- [Kurtulus, Bedri] Mugla Univ, Geol Engn Dept, TR-48000 Kotekli Mugla, Turkeyen_US
dc.identifier.doi10.1016/j.cageo.2011.04.019
dc.identifier.volume38en_US
dc.identifier.issue1en_US
dc.identifier.startpage43en_US
dc.identifier.endpage51en_US
dc.relation.journalComputers & Geosciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster