Show simple item record

dc.contributor.authorGulsu, M
dc.contributor.authorSezer, M
dc.date.accessioned2020-11-20T16:45:09Z
dc.date.available2020-11-20T16:45:09Z
dc.date.issued2005
dc.identifier.issn0020-7160
dc.identifier.urihttps://doi.org/10.1080/00207160512331331156
dc.identifier.urihttps://hdl.handle.net/20.500.12809/5287
dc.descriptionWOS: 000229395200013en_US
dc.description.abstractThe purpose of this study is to give a Taylor polynomial approximation for the solution of mth-order linear difference equations with variable coefficients under the mixed conditions about any point. For this purpose, the Taylor matrix method is introduced. This method is based on first taking the truncated Taylor expansions of the functions in the difference equation and then substituting their matrix forms into the given equation. Hence the resultant matrix equation can be solved and the unknown Taylor coefficients can be found approximately. In addition, examples that illustrate the pertinent features of the method are presented, and the results of the study are discussed.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTaylor polynomials and seriesen_US
dc.subjectTaylor polynomial solutionsen_US
dc.subjectdifference equationsen_US
dc.titleA method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomialsen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTempMugla Univ, Fac Sci, Dept Math, Mugla, Turkeyen_US
dc.identifier.doi10.1080/00207160512331331156
dc.identifier.volume82en_US
dc.identifier.issue5en_US
dc.identifier.startpage629en_US
dc.identifier.endpage642en_US
dc.relation.journalInternational Journal of Computer Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record