• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Approximate Solution of High-Order Nonlinear Ordinary Differential Equations by Improved Collocation Method with Terms of Shifted Chebyshev Polynomials

Date

2016

Author

Öztürk, Y.
Gülsu, M.

Metadata

Show full item record

Abstract

In this paper, we present a direct computational method for solving the higher-order nonlinear differential equations by using collocation method. This method transforms the nonlinear differential equation into the system of nonlinear algebraic equations with unknown shifted Chebyshev coefficients, via Chebyshev–Gauss collocation points. The solution of this system yields the Chebyshev coefficients of the solution function. The method is valid for both initial-value and boundary-value problems. Several examples are presented to illustrate the accuracy and effectiveness of the method by the approximate solutions of very important equations of applied mathematics such as Lane–Emden equation, Riccati equation, Van der Pol equation. The approximate solutions can be very easily calculated using computer program Maple 13. © 2015, Springer India Pvt. Ltd.

Source

International Journal of Applied and Computational Mathematics

Volume

2

Issue

4

URI

https://doi.org/10.1007/s40819-015-0075-1
https://hdl.handle.net/20.500.12809/5932

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]

Related items

Showing items related by title, author, creator and subject.

  • The Solution of Fractional Wave Equation by using Modified Trial Equation Method and Homotopy Analysis Method 

    Kocak, Zeynep Fidan; Bulut, Hasan; Yel, Gulnur (Amer Inst Physics, 2014)
    In this study, we applied the Homotopy Analysis method to the nonlinear fractional wave equation. Then, we executed a comparison between analytical solution obtained by using Modified Trial Equation method and approximate ...
  • A numerical technique for solving functional integro-differential equations having variable bounds 

    Gökmen, Elçin; Gürbüz, Burcu; Sezer, Mehmet (Springer Heidelberg, 2018)
    In this paper, a collocation method based on Taylor polynomials is presented to solve the functional delay integro-differential equations with variable bounds. Using this method, we transform the functional equations to a ...
  • An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials 

    Bataineh, Ahmad Sami; Isık, Osman Raşit; Alomari, Abedel-Karrem; Shatnawi, Mohammad; Hashim, Ishak (Mdpi, 2020)
    In this study, we introduce an efficient computational method to obtain an approximate solution of the time-dependent Emden-Fowler type equations. The method is based on the 2D-Bernstein polynomials (2D-BPs) and their ...



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.