• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implementing a demand side management strategy for harmonics mitigation in a smart home using real measurements of household appliances

Thumbnail

View/Open

Full Text - Article (3.873Mb)

Date

2021

Author

Çiçek, Alper
Erenoğlu, Ayşe Kübra
Erdinç, Ozan
Bozkurt, Altuğ
Taşcıkaraoğlu, Akın
Catalão, João P.S.

Metadata

Show full item record

Abstract

Significant developments on semiconductor technology have captured the electronic industry and paved the way for dominating household appliances market. Typical loads in this market generally have nonlinear voltage-current characteristics. Therefore, highly-integrated power-electronic based electrical equipment in the demand side has caused harmonic pollution, which is one of the most important power quality problems in distribution system operation. To address this issue, there have been significantly great attempts to keep total harmonic distortion (THD) and total demand distortion (TDD) levels within International standard limits defined by IEEE 519 and IEC 61000. On the other hand, load shifting has recently drawn special attention of power grid planners to improve system performance substantially in the smart grid paradigm. In this study, the real harmonic measurements of residential appliances (both linear and nonlinear) are carried out in the Smart Home Laboratory in Yildiz Technical University, Istanbul, Turkey. Different load profiles are then created with a high accuracy based on the measured voltage and current, active, reactive and apparent power. Also, three case studies are considered to investigate the impacts of load shifting strategies on power quality requirements in terms of satisfying the relevant standards. As a result, it is shown that the TDD value decreases below nearly 8% limitation by mitigating the harmonic distortion and the TDD index, which indicates the harmonic distortion effect on the system regarding the desired standard limits of IEEE. © 2020 Elsevier Ltd

Source

International Journal of Electrical Power and Energy Systems

Volume

125

URI

https://doi.org/10.1016/j.ijepes.2020.106528
https://hdl.handle.net/20.500.12809/6182

Collections

  • Elektrik Elektronik Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.