• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Usage of Machine Learning Algorithms for Flow Based Anomaly Detection System in Software Defined Networks

Date

2021

Author

Akbaş, Muhammet Fatih
Güngör, Cengiz
Karaarslan, Enis

Metadata

Show full item record

Abstract

Computer networks are becoming more complex in the number of connected nodes and the amount of traffic. The growing number and increasing complexity of cyber-attacks makes network management and security a challenge. Software defined networks (SDN) technology is a solution that aims for efficient and flexible network management. The SDN controller(s) plays an important role in detecting and preventing cyber-attacks. In this study, a flow-based anomaly detection system running on the POX controller is designed. A comparative analysis of the supervised machine algorithms is given to choose the optimum anomaly detection method in SDN based networks. NSL-KDD dataset is used for training and testing of the classifiers. The results show that machine learning algorithms have great potential in the success of flow-based anomaly detection systems in the SDN infrastructure. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Source

Advances in Intelligent Systems and Computing

Volume

1197 AISC

URI

https://doi.org/10.1007/978-3-030-51156-2_135
https://hdl.handle.net/20.500.12809/6187

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [103]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.