• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Usage of Machine Learning Algorithms for Flow Based Anomaly Detection System in Software Defined Networks

Tarih

2021

Yazar

Akbaş, Muhammet Fatih
Güngör, Cengiz
Karaarslan, Enis

Üst veri

Tüm öğe kaydını göster

Özet

Computer networks are becoming more complex in the number of connected nodes and the amount of traffic. The growing number and increasing complexity of cyber-attacks makes network management and security a challenge. Software defined networks (SDN) technology is a solution that aims for efficient and flexible network management. The SDN controller(s) plays an important role in detecting and preventing cyber-attacks. In this study, a flow-based anomaly detection system running on the POX controller is designed. A comparative analysis of the supervised machine algorithms is given to choose the optimum anomaly detection method in SDN based networks. NSL-KDD dataset is used for training and testing of the classifiers. The results show that machine learning algorithms have great potential in the success of flow-based anomaly detection systems in the SDN infrastructure. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Kaynak

Advances in Intelligent Systems and Computing

Cilt

1197 AISC

Bağlantı

https://doi.org/10.1007/978-3-030-51156-2_135
https://hdl.handle.net/20.500.12809/6187

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [103]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.