• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Deep Learning-Based IoT Implementation for Detection of Patients’ Falls in Hospitals

Tarih

2021

Yazar

Koçak, Hilal
Çetin, Gürcan

Üst veri

Tüm öğe kaydını göster

Künye

Koçak H., Çetin G. (2021) A Deep Learning-Based IoT Implementation for Detection of Patients’ Falls in Hospitals. In: Hemanth J., Yigit T., Patrut B., Angelopoulou A. (eds) Trends in Data Engineering Methods for Intelligent Systems. ICAIAME 2020. Lecture Notes on Data Engineering and Communications Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-79357-9_46

Özet

Falls in hospitalized patients are a major problem for patient safety. Accidental falls are one of the most common incidents reported in hospitals. Thanks to the advances in technology, smart solutions can be developed for hospital environments as well as in all areas of life. Wearable devices, context-aware or computer vision-based systems can be designed to detect patients who fall in hospital. Internet of Things (IoT) can also be placed on wearable health products, and gathered sensors data is processed and analyzed with Machine Learning (ML) and Deep Learning (DL) algorithms. Furthermore, some DL algorithms such as LSTM are also applied to the analysis of time-series data. In this study, to minimize damage caused by falls, we’ve proposed a model that can achieve real-time fall detection by applying LSTM based deep learning technique on IoT sensor data. In result of the study, falling detection has been realized with 98% F1-score. Moreover, a mobile application has been successfully developed to inform caregivers about patients’ fall.

Kaynak

Lecture Notes on Data Engineering and Communications Technologies

Cilt

76

Bağlantı

https://doi.org/10.1007/978-3-030-79357-9_46
https://hdl.handle.net/20.500.12809/9441

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.