Basit öğe kaydını göster

dc.contributor.authorGialini, Neda
dc.contributor.authorBelaghi, Reza Arabi
dc.contributor.authorAftabi, Younes
dc.contributor.authorFaramarzi, Elnaz
dc.contributor.authorEdgünlü, Tuba
dc.date.accessioned2022-02-07T11:19:11Z
dc.date.available2022-02-07T11:19:11Z
dc.date.issued2022en_US
dc.identifier.citationGilani N, Arabi Belaghi R, Aftabi Y, Faramarzi E, Edgünlü T and Somi MH (2022) Identifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approach. Front. Genet. 12:779455. doi: 10.3389/fgene.2021.779455en_US
dc.identifier.urihttps://doi.org/10.3389/fgene.2021.779455
dc.identifier.urihttps://hdl.handle.net/20.500.12809/9774
dc.description.abstractAim: This study aimed to accurately identification of potential miRNAs for gastric cancer (GC) diagnosis at the early stages of the disease. Methods: We used GSE106817 data with 2,566 miRNAs to train the machine learning models. We used the Boruta machine learning variable selection approach to identify the strong miRNAs associated with GC in the training sample. We then validated the prediction models in the independent sample GSE113486 data. Finally, an ontological analysis was done on identified miRNAs to eliciting the relevant relationships. Results: Of those 2,874 patients in the training the model, there were 115 (4%) patients with GC. Boruta identified 30 miRNAs as potential biomarkers for GC diagnosis and hsa-miR-1343-3p was at the highest ranking. All of the machine learning algorithms showed that using hsa-miR-1343-3p as a biomarker, GC can be predicted with very high precision (AUC; 100%, sensitivity; 100%, specificity; 100% ROC; 100%, Kappa; 100) using with the cut-off point of 8.2 for hsa-miR-1343-3p. Also, ontological analysis of 30 identified miRNAs approved their strong relationship with cancer associated genes and molecular events. Conclusion: The hsa-miR-1343-3p could be introduced as a valuable target for studies on the GC diagnosis using reliable biomarkers.en_US
dc.item-language.isoengen_US
dc.publisherFrontiers Media S.A.en_US
dc.relation.isversionof10.3389/fgene.2021.779455en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAUCen_US
dc.subjectBoruta algorithmen_US
dc.subjectGastric canceren_US
dc.subjectGSE106817en_US
dc.subjectGSE113486en_US
dc.subjecthsa-miR-1343-3pen_US
dc.subjectMachine learningen_US
dc.subjectmiRNAen_US
dc.titleIdentifying Potential miRNA Biomarkers for Gastric Cancer Diagnosis Using Machine Learning Variable Selection Approachen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Tıp Fakültesi, Temel Tıp Bilimleri Bölümüen_US
dc.contributor.authorID0000-0002-9300-9324en_US
dc.contributor.institutionauthorEdgünlü, Tuba
dc.identifier.volume12en_US
dc.relation.journalFrontiers in Geneticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster