• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Fizik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Fizik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Piezoelectric and magnetoelectric evaluations on PVDF/CoFe2O4 based flexible nanogenerators for energy harvesting applications

Thumbnail

View/Open

Tam metin / Full text (9.378Mb)

Date

2022

Author

Koç, Muhterem
Demirci Dönmez, Çiğdem Elif
Paralı, Levent
Sarı, Ali
Aktürk, Selçuk

Metadata

Show full item record

Citation

Koç, M., Dönmez, Ç.E.D., Paralı, L. et al. Piezoelectric and magnetoelectric evaluations on PVDF/CoFe2O4 based flexible nanogenerators for energy harvesting applications. J Mater Sci: Mater Electron (2022). https://doi.org/10.1007/s10854-022-07956-w

Abstract

In this study, flexible PVDF/CoFe2O4 based nanogenerators were fabricated using composite fibers which were prepared by combining polyvinylidene difluoride (PVDF) and cobalt ferrite (CoFe2O4) nanoparticles (NPs: similar to 16 nm diameter) at a concentration of 1, 3, 5, 7, and 10 wt%. All of the flexible PVDF/ CoFe2O4 nanofibers were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The incorporation of CoFe2O4 NPs into the PVDF leads to the formation a rich electroactive beta-phase in the composite structure. The piezoelectric properties of nanogenerators indicate that the nanogenerator based on the PVDF/CoFe2O4 fibers containing CoFe2O4 NPs at a concentration of 3 wt% has a greater power efficiency of 27.2% at 20 Hz compared to that of the nanogenerator with the pure PVDF fibers at 10 Hz, under the same resistive load of 2.5 M Omega. The results also show the magnetoelectric properties of the nanogenerator with PVDF + 10 wt% CoFe2O4 reached the highest voltage value of 18.87mV at the same load resistive load (2.5 M Omega) for a low-level magnetic field frequency of 50 Hz. The specially improved nanogenerators which have capability of producing electrical signals at the same time from mechanical and magnetic stimulations hold promise for the development of wearable electronics devices.

Source

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

URI

https://doi.org/10.1007/s10854-022-07956-w
https://hdl.handle.net/20.500.12809/9882

Collections

  • Fizik Bölümü Koleksiyonu [189]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.