• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Tıp Fakültesi
  • Temel Tıp Bilimleri Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Tıp Fakültesi
  • Temel Tıp Bilimleri Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Melatonin is effective in attenuating cisplatin-induced neurotoxicity

Thumbnail

View/Open

Tam metin / Full text (1.530Mb)

Date

2022

Author

Bayraktar, U. Arda
Arihan, Okan
Atalay, Özbeyen
Gök, Müslüm
Çiçek, Çiğdem
Bodur, Ebru
Tuncer, Meltem

Metadata

Show full item record

Citation

Bayraktar, U. A., Arıhan, O., Atalay, Ö., Gök, M., Çiçek, Ç., Bodur, E., Tuncer, M., J. Biochem. Mol. Toxicol. 2022, e23075. https://doi.org/10.1002/jbt.23075

Abstract

Cisplatin (Cis) is a chemotherapeutic agent that has many side effects. Neurotoxicity is one of the most important of these side effects. Oxidative stress and neuroinflammation are the best-known mechanisms in the pathogenesis of neurotoxicity development. In this study, we aimed to determine whether melatonin (Mel), with antioxidant and anti-inflammatory effects, is effective in preventing Cis-induced neurotoxicity. Forty-eight male Sprague-Dawley rats were divided into six groups (n = 8) as follows: control (0.9% NaCl), vehicle (5% ethanol), Cis (6 mg/kg), Cis (6 mg/kg) + vehicle (5% ethanol), Mel (20 mg/kg), and Cis (6 mg/kg) + Mel (20 mg/kg) groups. Cis was administered as a single dose on the 3rd day of the experiment while Mel was given for 5 days. All administrations were performed via intraperitoneal injection. After injections, T-maze, rotarod, and hot plate tests were performed to evaluate cognitive, motor, and sensory functions, respectively. Following sacrification oxidative stress markers, cholinergic function, and proinflammatory cytokines were studied from brain homogenates. Cis impaired cognitive function and motor performance in the Cis and Cis+Vehicle groups. The drug also increased oxidative stress in the brain. Mel significantly improved brain oxidant/antioxidant status and also decreased the overproduction of proinflammatory cytokines (superoxide dismutase activities in Cis+Vehicle and Cis+Mel groups: 104.55 +/- 9.50 mu U/mg protein vs. 150.13 +/- 4.70 mu U/mg protein, respectively, p < 0.05; tumor necrosis factor-alpha levels in Cis and Cis+Mel groups: 40 pg/ml vs. 20 pg/ml, respectively, p < 0.05). It seems that Mel can improve Cis neurotoxicity. For a more firm conclusion, further studies using Mel at different doses with larger groups should be performed.

Source

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY

URI

https://doi.org/10.1002/jbt.23075
https://hdl.handle.net/20.500.12809/9957

Collections

  • Temel Tıp Bilimleri Bölümü Koleksiyonu [193]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.