• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • İnşaat Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • İnşaat Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Applying decision tree algorithm to explore occupational injuries in the Turkish construction industry

Thumbnail

View/Open

Tam metin / Article (657.1Kb)

Date

2022

Author

Tetik, Yılmaz Öngüç
Akboğa Kale, Özge
Bayram, İrem
Baradan, Selim

Metadata

Show full item record

Citation

Tetik, Y. O., O. A. Kale, I. Bayram, and S. Baradan. 2022. "Applying Decision Tree Algorithm to Explore Occupational Injuries in the Turkish Construction Industry." Journal of Engineering Research (Kuwait) 10 (3): 59-70. doi:10.36909/jer.12209

Abstract

Occupational injuries and fatalities are one of the most significant issues in the construction industry. Variables, such as workers’ behavior, age, worksite condition, and type of activity, play key roles in the occurrence of construction accidents. In recent years, data mining techniques have been successfully used not only in health, economy, and social sciences, but also in construction-related fields. In this study, C5.0 decision tree algorithm was used to analyze the accident data obtained from the Social Security Institution of Turkey. A classification tree model was created to discover the associations between the attributes. The results show the relationship between the injury status of workers and the attributes, and the accuracy rate of the model was 70.26%. Meanwhile, according to findings, unsafe conditions, type of accident, and activity type were the most important attributes in the model. Furthermore, the predictor importance of the attributes was compared, and several outcomes were discovered; for instance, the workers’ educational background has greater predictive power than age. On the other hand, the branches of the decision tree pointed out several attribute sequences due to their high rated serious/fatal injury rates. The results of this study can be used in the prevention and mitigation strategies for construction accidents.

Source

Journal of Engineering Research (Kuwait)

Volume

10

Issue

3

URI

https://doi.org/10.36909/jer.12209
https://hdl.handle.net/20.500.12809/10292

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [68]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.