dc.contributor.author | Aydın, Dursun | |
dc.contributor.author | Ahmed, S. Ejaz | |
dc.contributor.author | Yılmaz, Ersin | |
dc.date.accessioned | 2020-11-20T14:42:12Z | |
dc.date.available | 2020-11-20T14:42:12Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0094-9655 | |
dc.identifier.issn | 1563-5163 | |
dc.identifier.uri | https://doi.org/10.1080/00949655.2019.1572757 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/1037 | |
dc.description | 8th International Workshop on Perspectives on High-Dimensional Data Analysis (HDDA) - APR 09-13, 2018 - Marrakesh, MOROCCO | en_US |
dc.description | WOS: 000460629700004 | en_US |
dc.description.abstract | In this paper, we consider the estimation problem for the semiparametric regression model with censored data in which the number of explanatory variables p in the linear part is much larger than sample size n, often denoted as p n. The purpose of this paper is to study the effects of covariates on a response variable censored on the right by a random censoring variable with an unknown probability distribution. It should be noted that high variance and over-fitting are a major concern in such problems. Ordinary statistical methods for estimation cannot be applied directly to censored and high-dimensional data, and therefore a transformation is required. In the context of this paper, a synthetic data transformation is used for solving the censoring problem. We then apply the LASSO-type double-penalized least squares (DPLS) to achieve sparsity in the parametric component and use smoothing splines to estimate the nonparametric component. A Monte Carlo simulation study is performed to show the performance of the estimators and to analyse the effects of the different censoring levels. A real high-dimensional censored data example is used to illustrate the ideas discussed herein. | en_US |
dc.description.sponsorship | Cadi Ayyad Univ, Moroccan Assoc Probabil & Stat | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.item-rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | High-Dimensional Data | en_US |
dc.subject | Right-Censored Data | en_US |
dc.subject | Smoothing Spline | en_US |
dc.subject | Lasso | en_US |
dc.subject | Double-Penalized Least Squares | en_US |
dc.subject | Semiparametric Models | en_US |
dc.title | Estimation of semiparametric regression model with right-censored high-dimensional data | en_US |
dc.item-type | conferenceObject | en_US |
dc.contributor.department | MÜ,Fen Fakültesi, İstatistik Bölümü | en_US |
dc.contributor.institutionauthor | Aydın, Dursun | |
dc.contributor.institutionauthor | Yılmaz, Ersin | |
dc.identifier.doi | 10.1080/00949655.2019.1572757 | |
dc.identifier.volume | 89 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 985 | en_US |
dc.identifier.endpage | 1004 | en_US |
dc.relation.journal | Journal of Statistical Computation and Simulation | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |