Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.authorAhmed, S. Ejaz
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2020-11-20T14:42:12Z
dc.date.available2020-11-20T14:42:12Z
dc.date.issued2019
dc.identifier.issn0094-9655
dc.identifier.issn1563-5163
dc.identifier.urihttps://doi.org/10.1080/00949655.2019.1572757
dc.identifier.urihttps://hdl.handle.net/20.500.12809/1037
dc.description8th International Workshop on Perspectives on High-Dimensional Data Analysis (HDDA) - APR 09-13, 2018 - Marrakesh, MOROCCOen_US
dc.descriptionWOS: 000460629700004en_US
dc.description.abstractIn this paper, we consider the estimation problem for the semiparametric regression model with censored data in which the number of explanatory variables p in the linear part is much larger than sample size n, often denoted as p n. The purpose of this paper is to study the effects of covariates on a response variable censored on the right by a random censoring variable with an unknown probability distribution. It should be noted that high variance and over-fitting are a major concern in such problems. Ordinary statistical methods for estimation cannot be applied directly to censored and high-dimensional data, and therefore a transformation is required. In the context of this paper, a synthetic data transformation is used for solving the censoring problem. We then apply the LASSO-type double-penalized least squares (DPLS) to achieve sparsity in the parametric component and use smoothing splines to estimate the nonparametric component. A Monte Carlo simulation study is performed to show the performance of the estimators and to analyse the effects of the different censoring levels. A real high-dimensional censored data example is used to illustrate the ideas discussed herein.en_US
dc.description.sponsorshipCadi Ayyad Univ, Moroccan Assoc Probabil & Staten_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHigh-Dimensional Dataen_US
dc.subjectRight-Censored Dataen_US
dc.subjectSmoothing Splineen_US
dc.subjectLassoen_US
dc.subjectDouble-Penalized Least Squaresen_US
dc.subjectSemiparametric Modelsen_US
dc.titleEstimation of semiparametric regression model with right-censored high-dimensional dataen_US
dc.item-typeconferenceObjecten_US
dc.contributor.departmentMÜ,Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.identifier.doi10.1080/00949655.2019.1572757
dc.identifier.volume89en_US
dc.identifier.issue6en_US
dc.identifier.startpage985en_US
dc.identifier.endpage1004en_US
dc.relation.journalJournal of Statistical Computation and Simulationen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster