Basit öğe kaydını göster

dc.contributor.authorYalçın, Muhammet Oğuzhan
dc.contributor.authorGüler Dincer, Nevin
dc.contributor.authorİşçi Güneri, Öznur
dc.date.accessioned2022-11-17T13:11:29Z
dc.date.available2022-11-17T13:11:29Z
dc.date.issued2022en_US
dc.identifier.citationYalçın M, güler n, GÜNERİ Ö (2022). Investigating the COVID19 Characteristics of the Countries Based on Time Series Clustering. Cumhuriyet Science Journal, 43(1), 146 - 164. 10.17776/csj.969445en_US
dc.identifier.issn2587-2680 / 2587-246X
dc.identifier.urifile:///C:/Users/Aidata/Downloads/document-29.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10392
dc.description.abstractThe objective of this study is to reveal the COVID19 characteristics of the countries by using time series clustering. Up to now, various studies have been conducted for similar objectives. But, it has been observed that these studies belong to early time of pandemic and are involved limited number of countries. To analyze the characteristic of COVID19 more, this study has considered 111 countries and time period between the 4th of April 2020 and the 1st of January 2021. Fuzzy K-Medoid (FKM) is preferred as clustering method due to its three abilities: i) FKM enables to determine the similarities and differences between the countries in more detail by utilizing the membership degrees, ii) In FKM, cluster centers are selected among from objects in the data set. Thus, it has the ability of detecting the countries which represent the behavior of all countries, iii) FKM is a robust method against to outliers. Thanks to this ability, FKM prevents that the countries exhibiting abnormal behavior negatively affect to the clustering results. At the results of the analyses, it is observed that 111 countries have three different behaviors in terms of confirmed cases and five different behaviors in terms of deaths.en_US
dc.item-language.isoengen_US
dc.publisherSivas Cumhuriyet Üniversitesien_US
dc.relation.isversionof10.17776/csj.969445en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy K-medoisen_US
dc.subjectCluster validityen_US
dc.subjectTime series clusteringen_US
dc.subjectCOVID19en_US
dc.titleInvestigating the COVID19 Characteristics of the Countries Based on Time Series Clusteringen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.authorID0000-0003-4017-5588en_US
dc.contributor.authorID0000-0003-0361-1803en_US
dc.contributor.authorID0000-0003-3677-7121en_US
dc.contributor.institutionauthorYalçın, Muhammet Oğuzhan
dc.contributor.institutionauthorGüler Dincer, Nevin
dc.contributor.institutionauthorİşçi Güneri, Öznur
dc.identifier.volume43en_US
dc.identifier.issue1en_US
dc.identifier.startpage146en_US
dc.identifier.endpage164en_US
dc.relation.journalCumhuriyet Science Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster