• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function

Thumbnail

Göster/Aç

Tam metin / Article (1.012Mb)

Tarih

2022

Yazar

Lestari, Budi
Chamidah, Nur
Aydın, Dursun
Yılmaz, Ersin

Üst veri

Tüm öğe kaydını göster

Künye

Lestari, B.; Chamidah, N.; Aydin, D.; Yilmaz, E. Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function. Symmetry 2022, 14, 2227. https://doi.org/10.3390/sym14112227

Özet

In statistical analyses, especially those using a multiresponse regression model approach, a mathematical model that describes a functional relationship between more than one response variables and one or more predictor variables is often involved. The relationship between these variables is expressed by a regression function. In the multiresponse nonparametric regression (MNR) model that is part of the multiresponse regression model, estimating the regression function becomes the main problem, as there is a correlation between the responses such that it is necessary to include a symmetric weight matrix into a penalized weighted least square (PWLS) optimization during the estimation process. This is, of course, very complicated mathematically. In this study, to estimate the regression function of the MNR model, we developed a PWLS optimization method for the MNR model proposed by a previous researcher, and used a reproducing kernel Hilbert space (RKHS) approach based on a smoothing spline to obtain the solution to the developed PWLS optimization. Additionally, we determined the symmetric weight matrix and optimal smoothing parameter, and investigated the consistency of the regression function estimator. We provide an illustration of the effects of the smoothing parameters for the estimation results using simulation data. In the future, the theory generated from this study can be developed within the scope of statistical inference, especially for the purpose of testing hypotheses involving multiresponse nonparametric regression models and multiresponse semiparametric regression models, and can be used to estimate the nonparametric component of a multiresponse semiparametric regression model used to model Indonesian toddlers’ standard growth charts.

Kaynak

Symmetry

Cilt

14

Sayı

11

Bağlantı

https://doi.org/10.3390/sym14112227
https://hdl.handle.net/20.500.12809/10397

Koleksiyonlar

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.