Basit öğe kaydını göster

dc.contributor.authorCeyhan, Mustafa
dc.contributor.authorKaraarslan, Enis
dc.date.accessioned2022-12-15T13:33:00Z
dc.date.available2022-12-15T13:33:00Z
dc.date.issued2022en_US
dc.identifier.citationCeyhan, M., Karaarslan, E. (2022). Measuring The Robustness of AI Models Against Adversarial Attacks: Thyroid Ultrasound Images Case Study. Journal of Emerging Computer Technologies, 2(2), 42-47.en_US
dc.identifier.urihttps://dergipark.org.tr/en/pub/ject/issue/72547/1194541
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10443
dc.description.abstractThe healthcare industry is looking for ways on using artificial intelligence effectively. Decision support systems use AI (Artificial Intelligence) models that diagnose cancer from radiology images. These models in such implementations are not perfect, and the attackers can use techniques to make the models give wrong predictions. It is necessary to measure the robustness of these models after an adversarial attack. The studies in the literature focus on models trained with images obtained from different regions (lung x-ray and skin dermoscopy images) and shooting techniques. This study focuses on thyroid ultrasound images as a use case. We trained these images with VGG19, Xception, ResNet50V2, and EfficientNetB2 CNN models. The aim is to make these models make false predictions. We used FGSM, BIM, and PGD techniques to generate adversarial images. The attack resulted in misprediction with 99%. Future work will focus on making these models more robust with adversarial training.en_US
dc.item-language.isoengen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdversarial Attacken_US
dc.subjectCNN Modelsen_US
dc.subjectThyroid Ultrasound Imagesen_US
dc.subjectMachine Learningen_US
dc.subjectDeep Learningen_US
dc.subjectData Securityen_US
dc.titleMeasuring The Robustness of AI Models Against Adversarial Attacks: Thyroid Ultrasound Images Case Studyen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-3595-8783en_US
dc.contributor.institutionauthorKaraarslan, Enis
dc.identifier.volume2en_US
dc.identifier.issue2en_US
dc.identifier.startpage42en_US
dc.identifier.endpage47en_US
dc.relation.journalJournal of Emerging Computer Technologiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster