Basit öğe kaydını göster

dc.contributor.authorRamly, Nurfarawahida
dc.contributor.authorRusiman, Mohd Saifullah
dc.contributor.authorIsmail, Shuhaida
dc.contributor.authorSuparman
dc.contributor.authorHamzah, Firdaus Mohamad
dc.contributor.authorGürünlü Alma, Özlem
dc.date.accessioned2022-12-27T08:33:26Z
dc.date.available2022-12-27T08:33:26Z
dc.date.issued2023en_US
dc.identifier.citationRamly, N., M. S. Rusiman, S. Ismail, Suparman, F. M. Hamzah, and O. G. Alma. 2023. "An Adjustment Degree of Fitting on Fuzzy Linear Regression Model Toward Manufacturing Income." IAES International Journal of Artificial Intelligence 12 (2): 543-551. doi:10.11591/ijai.v12.i2.pp543-551.en_US
dc.identifier.issn2252-8938
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10457
dc.description.abstractThe regression analysis is a common tool in data analysis, while fuzzy regression can be used to analyze uncertain or imprecise data. Manufacturing companies often having difficulty predicting their future income. Thus, a new approach is required for the prediction of future company income. This article analyzed the manufacturing income by using the multiple linear regression (MLR) model and two fuzzy linear regression (FLR) model proposed by Tanaka and Zolfaghari, respectively. In order to find the optimum of the FLR model, the degree of fitting (H) was adjusted in between 0 to 1. The performance of three models has been measured by using mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). Detailed analysis proved that Zolfaghari’s FLR model with the degree of fitting of 0.025 outperformed the MLR and FLR with Tanaka’s model with the smallest error value. In conclusion, the manufacturing income is directly correlated with six independent variables. Furthermore, three independent variables are inversely related to manufacturing income. Based on the results of this model, it appears to be suitable for predicting future manufacturing income.en_US
dc.item-language.isoengen_US
dc.publisherInstitute of Advanced Engineering and Scienceen_US
dc.relation.isversionof10.11591/ijai.v12.i2.pp543-551.en_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDegree of fittingen_US
dc.subjectFuzzy linear regressionen_US
dc.subjectManufacturing incomeen_US
dc.subjectMean square erroren_US
dc.subjectMultiple linear regressionen_US
dc.titleAn adjustment degree of fitting on fuzzy linear regression model toward manufacturing incomeen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.authorID0000-0001-6978-9810en_US
dc.contributor.institutionauthorGürünlü Alma, Özlem
dc.identifier.volume12en_US
dc.identifier.issue2en_US
dc.identifier.startpage543en_US
dc.identifier.endpage552en_US
dc.relation.journalIAES International Journal of Artificial Intelligenceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster