Basit öğe kaydını göster

dc.contributor.authorAydın, Dursun
dc.contributor.authorAhmed, Syed Eja
dc.contributor.authorYılmaz, Ersin
dc.date.accessioned2023-01-16T11:15:42Z
dc.date.available2023-01-16T11:15:42Z
dc.date.issued2022en_US
dc.identifier.citationAhmed, S. E., Aydın, D., & Yılmaz, E. (2023). A survey of smoothing techniques based on a backfitting algorithm in estimation of semiparametric additive models. WIREs Computational Statistics, e1605. https://doi.org/10.1002/wics.1605en_US
dc.identifier.issn19395108
dc.identifier.urihttps://doi.org/10.1002/wics.1605
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10488
dc.description.abstractThis paper aims to present an overview of Semiparametric additive models. An estimation of the finite-parameters of semiparametric regression models that involve additive nonparametric components is explained, including their historical background. In addition, three different smoothing techniques are considered in order to show the working procedures of the estimators and to explore their statistical properties: smoothing splines, kernel smoothing and local linear regression. These methods are compared with respect to both their theoretical and practical behaviors. A simulation study and a real data example are carried out to reveal the performances of the three methods. Accordingly, the advantages and disadvantages of each method regarding semiparametric additive models are presented based on their comparative scores using determined evaluation metrics for loss of information. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical Models > Semiparametric Models.en_US
dc.item-language.isoengen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.relation.isversionof10.1002/wics.1605en_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdditive modelsen_US
dc.subjectKernel smoothingen_US
dc.subjectLocal linear estimatoren_US
dc.subjectSemiparametric regressionen_US
dc.subjectSmoothing splinesen_US
dc.titleA survey of smoothing techniques based on a backfitting algorithm in estimation of semiparametric additive modelsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, İstatistik Bölümüen_US
dc.contributor.authorID0000-0002-9871-4700en_US
dc.contributor.institutionauthorAydın, Dursun
dc.contributor.institutionauthorYılmaz, Ersin
dc.relation.journalWiley Interdisciplinary Reviews: Computational Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster