Basit öğe kaydını göster

dc.contributor.authorKarpuzcu, Betül Asiye
dc.contributor.authorTürk, Erdem
dc.contributor.authorİbrahim, Ahmad Hassan
dc.contributor.authorKarabulut, Onur Can
dc.contributor.authorSüzek, Barış Ethem
dc.date.accessioned2023-08-07T10:22:02Z
dc.date.available2023-08-07T10:22:02Z
dc.date.issued2023en_US
dc.identifier.citationKarpuzcu BA, Türk E, Ibrahim AH, Karabulut OC, Süzek BE. Machine Learning Methods for Virus-Host Protein-Protein Interaction Prediction. Methods Mol Biol. 2023;2690:401-417. doi: 10.1007/978-1-0716-3327-4_31. PMID: 37450162.en_US
dc.identifier.issn10643745
dc.identifier.urihttps://hdl.handle.net/20.500.12809/10854
dc.description.abstractThe attachment of a virion to a respective cellular receptor on the host organism occurring through the virus–host protein–protein interactions (PPIs) is a decisive step for viral pathogenicity and infectivity. Therefore, a vast number of wet-lab experimental techniques are used to study virus–host PPIs. Taking the great number and enormous variety of virus–host PPIs and the cost as well as labor of laboratory work, however, computational approaches toward analyzing the available interaction data and predicting previously unidentified interactions have been on the rise. Among them, machine-learning-based models are getting increasingly more attention with a great body of resources and tools proposed recently. In this chapter, we first provide the methodology with major steps toward the development of a virus–host PPI prediction tool. Next, we discuss the challenges involved and evaluate several existing machine-learning-based virus–host PPI prediction tools. Finally, we describe our experience with several ensemble techniques as utilized on available prediction results retrieved from individual PPI prediction tools. Overall, based on our experience, we recognize there is still room for the development of new individual and/or ensemble virus–host PPI prediction tools that leverage existing tools.en_US
dc.item-language.isoengen_US
dc.publisherHumana Press Inc.en_US
dc.relation.isversionof10.1007/978-1-0716-3327-4_31en_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnsemble methodsen_US
dc.subjectIn silico predictionen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectViral infectionsen_US
dc.titleMachine Learning Methods for Virus–Host Protein–Protein Interaction Predictionen_US
dc.item-typebookParten_US
dc.contributor.departmentMÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-1521-4306en_US
dc.contributor.institutionauthorKarpuzcu, Betül Asiye
dc.contributor.institutionauthorTürk, Erdem
dc.contributor.institutionauthorKarabulut, Onur Can
dc.contributor.institutionauthorİbrahim, Ahmad Hassan
dc.contributor.institutionauthorSüzek, Barış Ethem
dc.identifier.volume2690en_US
dc.identifier.startpage401en_US
dc.identifier.endpage417en_US
dc.relation.journalMethods in Molecular Biologyen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster